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Chapter 1

Basic concept of the SiBUC model

1.1 The energy budget at different surface condition

The radiative energy absorbed from the sun and the atmosphere is partitioned into fluxes of
sensible, latent, and gound heat, and this partitioning (redistribution of absorbed energy) is
strongly dependent on both the land cover characteristics and its hydrological state.

• When the surface is wet, as is common in irrigated agricultural areas and after rain events,
the incoming radiation is mostly used for evapotranspiration. In that case, sensible heat flux
and soil heat flux are usually much smaller than latent heat flux, and Bowen ratio is close
to zero.

• On a bare dry land, the absorption of the incoming radiation results in a strong heating of
the surface, which usually generates a strong turbulent sensible heat flux and large soil heat
flux. In that case, there is no evaporation, and the Bowen ratio is infinite.

• When the surface is covered by a dense vegetation, water is extracted mostly from the plant
root zone by transpiration. Thus, latent heat flux is dominant even if the soil surface is dry,
but as long as there is enough water available in the root zone and plants are not under
stress conditions.

• In the case of water body, as will be seen in Chapter 3, significant part of absorbed energy
is not used in a diurnal cycle of energy budget, and handed over in a seasonal cycle. The
diurnal variation of energy budget and surface temperature tend to be small. Therefore,
the energy budget components of water body have seasonal lag compared to those of other
surfaces.

• In the case of urban area, the surface is covered by inpermeable pavement which does not
allow the evaporation of soil moisture. Then, strong heating of the surface occurs as is the
case for bare soil. Due to the complex geometrical structure of urban canopy, as will be seen
in Chapter 2, the characteristics of turbulent transfer process and the radiation absorption
and exchange process are much different from other surfaces. Furthermore, artificial heat
is released as an additional energy as a result of human activity. The urban thermal envi-
ronment depends not only on the difference in physical properties such as reflectance and
heat capacity but also on the geometrical structure. Owing to the multiple scattering effects
within street canyon (between street and wall, between facing walls), the albedo of of urban
area becomes smaller than flat surface (Aida, 1978). As street canyon becomes deeper, sky-
view factor from wall and road becomes small, and propotion of long-wave radiative energy
trapped inside the canyon becomes larger.
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6 CHAPTER 1. BASIC CONCEPT OF THE SIBUC MODEL

1.2 Heterogeneity of land surface and ”mosaic” approach

At the grid resolution of atmospheric models, land-surfaces are very heterogeneous. This can
be easily understood by looking at maps of soil, vegetation, topography, land-use patterns, etc.
Figure 1.1 shows a land-use map of Lake Biwa Basin, Japan. The domain of this area is 1 degree
× 1 degree. Water surface and urbanized area are shown in white and blue color respectively.

Figure 1.1: Land-use of Lake Biwa Basin (from KS-202)

In the numerical weather prediction model, the size of grid element is usually decided from the
need of high accuracy and high computational efficiency. If the grid size is selected to eliminate
the heterogeneity of land-surface, in another word, if the grid size is selected according to the
’minimum’ size of land-use patch, it will become extremely small, and the number of grid elements
will become enormous. Therefore, the problem of heterogeneity, off course, must be treated in
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LSS (Land-Surface Scheme).
One solution is to find effective parameters to generate representative values of the whole grid
square. A great deal of work has already been done on aggregation research (Michaud and
Shuttleworth, 1997). Sometimes such a parameter aggregation is not possible because of high
non-linearity between parameter and resulting fluxes.
Another way is to apply a ”mosaic” type parameterization (Avissar and Pielke, 1989 ; Kimura,
1989). Such approach couples independently each land-use patch of the grid element to the
atmosphere. The grid averaged surface fluxes are obtained by averaging the surface fluxes over
each land-use weighted by its fractional area.

1.3 Surface elements and fractional area

The SiBUC (Simple Biosphere including Urban Canopy) model presented here uses ”mosaic”
approach to incorporate all kind of land-use into LSS. In the SiBUC model, the surface of each
grid area is divided into three landuse categories and five components.

1. green area (vegetation canopy(c), ground(g))

2. urban area (urban canopy(uc), urban ground(ug))

3. water body (wb)
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Figure 1.2: Schematic image of surface elements in SiBUC.

The schematic image of surface elements is shown in Figure 1.2. 1. green area is a natural land
surface area (forest, grassland, bare soil, etc.), and it is usually treated in most LSS. 2. urban
area is a artificial unpermeable surface (buildings, houses, pavement, etc.). 3. water body is a
inland water surface (ponds, rivers, lakes) or ocean surface.
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Although the surface of real basin is a mixture of much more constituents, all surface elements
must be classified into either of them. All the surface elements that are included in the same
category are lumped and treated as ”unit tile”.
Each gridbox has specified fixed fractions of these three land-use (Vga, Vua, Vwb, respectively). Also
canopy fractions within green area and urban area are also specified (Vc, Vuc, respectively).

Vga + Vua + Vwb = 1 , Vga ≥ 0, Vua ≥ 0, Vwb ≥ 0 (1.1)

0 ≤ Vc ≤ 1 , 0 ≤ Vuc ≤ 1 (1.2)

Sensible heat, latent heat, and momentum fluxes are calculated separately by each sub-model
(green area, urban canopy, water body). And the grid averaged surface fluxes are obtained by
averaging the surface fluxes over each land-use weighted by its fractional area.

[F ]total =
∑

i

[F ]iVi = [F ]gaVga + [F ]uaVua + [F ]wbVwb (1.3)

• green area
For the vegetation scheme, SiB (Sellers et al.,1986 ) is adopted. Some modification (sim-
plification) from original SiB was done. The basic component of green area model will be
described in Chapter 4. Now SiB2 (Sellers et al., 1994) can also be used as green area
model (according to user’s option).

• urban area
A new urban canopy scheme which can account for complex structure of canyon geometry
will be developed in Chapter 2. In the urban area, each roughness element is expressed by a
square prism. All prisms are assumed to have the same width and to be evenly spaced, while
they have their own roof heights. This description of urban canopy is used in the models for
turbulent transfer. Radiation process is described precisely based on the ”sky-view factor”.

• water body
Water body scheme is developed in Chapter 3 based on force-restore model. Both diurnal
and seasonal cycles of temperature are reproduced by this model.

The concept of ”SiBUC” was firstly proposed by Tanaka et al.(1994). At that time, the definition
of each fractional area are slightly differnt from current version. Also, sub-model for urban canopy
was too simple in the original version. In this study, urban-canopy model is entirely replaced based
on recent works.
The atmospheric boundary conditions (forcing variables) for SiBUC are the same as those for
SiB and other land-surface schemes. And SiBUC has prognostic physical-state variables for each
sub-model. Those are five surface temperatures, three deep layer temperatures, five interception
water stores, and three soil moisture stores (see Table 1.1).
When the grid size is small (less than one kilometer), the arrangement and size of each land-use
within grid area have small effects on heat fluxes, and only the fractional area must be considered
to express the land-use heterogeneity. But when the grid size is large (more than ten kilometers),
the land-use scale effects may appear, and the arrangement and size of each land-use should be
considered too. This ”scaling problem” will be discussed in Part II.
For the moment, SiBUC model just uses ”mosaic” parameterization to calculate the grid average
fluxes, and its application is limited to ”basin-scale”. SiBUC can be used for the understanding
of basin-scale energy and water cycles. SiBUC will be used as a tool for investigating the scaling
problem.
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Table 1.1: Prognostic variables and boundary conditions for SiBUC

Prognostic Variables

green area
Tc temperature for vegetation canopy K
Tg temperature for soil surface K
Td temperature for deep soil in green area (daily mean of Tg) K
Mc interception water stored on canopy m
Mg interception water puddled on the ground m
W1 soil moisture wetness for surface layer —
W2 soil moisture wetness for root zone —
W3 soil moisture wetness for recharge layer —

urban area
Tr temperature for building roof K
Tw temperature for building wall K
Tug temperature for road K
Tdu temperature for deep soil in urban area (daily mean of Tug) K
Mr interception water stored on building roof m
Mw interception water stored on building wall m
Mug interception water puddled on the road m

water body
Twb temperature for water surface K
Tdw temperature for deep water (daily mean of Twb) K

Boundary Conditions

zm reference height m
Tm air temperature at zm K
em vapor pressure at zm mb
um wind speed at zm m s−1

S ↓ downward short-wave radiation W m−2

L ↓ downward long-wave radiation W m−2

P precipitation rate m s−1





Chapter 2

Urban Canopy model

In this chapter, urban canopy model to be used as sub-model of land-surface scheme in mesoscale
atmospheric model is developed. Due to the complexity and diverity of urban area, the model
is formulated to be as general as possible to represent any kind of city. Masson (2000) has
also presented a physically-based urban canopy scheme based on canyon geometry. The model
presented here is different in the treatment of canyon structure. The model allows the existence of
building elements of different height. Radiation and turbulent transfer process in the urban area,
where various depth of street canyons are mixed, is modelled and formulated numerically. Then,
the effects of geometrical structure of city elements on energy and radiation environment in urban
area are discussed.

2.1 Street canyon geometry (k-story building)

skyg

roof

wall

skyw

road

bw

kho

F0b

θ

Figure 2.1: schematic image of street canyon,
direct beam radiation, and sky-view factor

Vuc : 1-Vuc

Figure 2.2: arrangement of street canyon
(overlook from the sky)

The canyon concept, developed by urban climatologists (e.g., Oke(1987)), uses such a framework:
it considers a single road, bordered by facing buildings. Figure 2.1 shows the schematic image
of street canyon, which is a basic component in the urban canopy model. In this figure, street
canyon consists of building (width is bw, height is kh0 (k-story)) and road. If we consider the
actual situation of city, road orientation (and also orientation of building wall) is mixed.
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12 CHAPTER 2. URBAN CANOPY MODEL

If we have detailed information about individual orientation and location of each buildings and
roads, it may be possible to calculate energy and radiation budget for all individual elements. But
in usual case, these information are difficult to obtain. Even though the street pattern is relatively
regular, the directions of solar radiation and wind are changing in time. Then, we abandon to
describe individual orientations of each street canyons.
In the calculation of radiation budget, it is assume that street is always perpendicular to the solar
beam radiation (see Figure 2.1), and that buildings are located along identical roads, the length
of which is considered far greater than their width (see Figure 2.2).

Table 2.1: Variables and parameters in urban canopy model
symbol definition unit
Vua fraction of urban area in a grid area
Vuc building coverage in Vua

n highest number of building story
k number of building story in a canyon
r(k) fraction of k-story building
h0 unit height of story m
bw building width m
skyw, skyg sky-view factor for wall and road rad
Cd drag coefficient
αi(i = r, w, ug) reflectance (albedo)
εi(i = r, w, ug) emissivity
ci(i = r, w, ug) specific heat J m−3K−1

ki(i = r, w, ug) thermal conductivity Wm−1K−1

θ incident angle of direct beam radiation rad
dSi, uSi(i = r, lw, rw, ug) downward and upward short-wave radiation W m−2

dLi, uLi(i = r, w, ug) downward and upward long-wave radiation W m−2

Rni(i = r, w, ug) net radiation W m−2

Hi (i=r,w,ug) sensible heat flux from roof, wall, road W m−2

Ei (i=r,w,ug) rates of evaporation from roof, wall, road m s−1

Pi (i=r,w,ug) rate of rainfall interception by the roof,wall, road m s−1

Di (i=r,w,ug) rate of drainage from the roof, wall, road m s−1

F0bi(i = r, w, ug) direct beam component of short-wave radiation W m−2

F0di(i = r, w, ug) diffuse component of short-wave radiation W m−2

F0ti(i = r, w, ug) long-wave radiation (diffuse only) W m−2

P rainfall rate m s−1

um wind speed at reference height K
Tm temperature at reference height K
em vapor pressure at reference height hPa
Ti(i = r, w, ug, du, bi) temperature K
e∗(Ti) (i=r,w,ug) saturation vapor pressure at Ti hPa
Mi (i=r,w,ug) water held on the roof, wall, road m
Si (i=r,w,ug) maximum value of Mi m
Wi (i=r,w,ug) wetted fraction of roof, wall, road
ri(i = r, w, du, au) aerodynamic resistance s m−1

where subscript (−r,−w,−lw,−rw,−ug,−du,−bi) stands for roof, wall, left-side wall,
right-side wall, road, soil, inside of building, respectively.
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Basically, it is assumed that radiation energy is emitted from the center point of each component
(roof, wall, road). And also ”sky-view factor” is defined as the view angle from these center points.
Using building coverage (or plan area density) (Vuc), the width of canyon air space is expressed as
bw(1 − Vuc)/Vuc. Therefore, sky-view factor for wall (skyw) and road (skyg) in a k-story canyon
is expressed as follows.

skyw = arccos
kh0

2

√√√√(kh0

2

)2

+

(
bw(1 − Vuc)

Vuc

)2
(2.1)

skyg = 2 arccos
kh0√√√√(kh0)2 +

(
bw(1 − Vuc)

2Vuc

)2
(2.2)

Direct beam component of short-wave radiation (F0b) incidents to the canyon with zenith angle
θ, diffuse component of short-wave and long-wave radiation insident hemispherically.

2.2 Radiation transfer process

In this model, three components (roof, wall, road) are considered in the calculation of net radiation.
Although there are various height of street canyon in the urban area, all canyons which have same
height (k-story) are treated together. Assuming the situation of k-story canyon, radiation budget
is calculated. Then, total net radiative energy for roof, wall, and road are calculated by integrating
with roof height distribution function (r(k)). This is a basic concept of radiation process in urban
canopy model.

Firstly, the partition of long-wave and short-wave radiation incident to each element is described.

2.2.1 partition of incident radiation

roof

road

θ

φ
ψ

direct beam
F0b

reflection of direct beam

right
wall

left
wall

x y

road

ν

reflection of diffuse radiation

roof

wall

β

F0d, F0t 

Figure 2.3: reflection to wall surface
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Fraction of direct beam radiation incident to roof is same as building coverage (Vuc). As for wall
and road, radiation is partitioned according to the incident zenith angle (θ). This partition is x：
y in Figure 2.3. where,

x : y = kh0 tan θ :
bw(1 − Vuc)

Vuc
− kh0 tan θ (2.3)

Furthermore, radiation energy is partitioned according to the situation that the beam radiation
incident to road or not.

when cos θ ≥ kh0√√√√(kh0)
2 +

(
bw(1 − Vuc)

Vuc

)2

F0br = F0b × Vuc F0bw = F0bVuc

(
h0

bw

)
k tan θ F0bg = F0b(1 − Vuc) − F0bw (2.4)

when cos θ ≤ kh0√√√√(kh0)
2 +

(
bw(1 − Vuc)

Vuc

)2

F0br = F0b × Vuc F0bw = F0b × (1 − Vuc) F0bg = 0 (2.5)

Although diffuse component of short-wave radiation and long-wave radiation incident to street
canyon hemispherically, these radiations are partitioned according to the fraction viewed from
high above the sky (see Figure 2.2). So no difuse radiation component is assigned to the wall.

F0dr = F0d × Vuc F0dw = 0 F0dg = F0d(1 − Vuc) (2.6)

F0tr = F0t × Vuc F0tw = 0 F0tg = F0t(1 − Vuc) (2.7)

2.2.2 Radiation budget at roof surface

In fact, roof may obtain some of radiation from neighboring buildings. But we don’t use the
detailed information about the arrangement of individual streets and buildings. Then, direct
interaction of radiation between each street canyon is omitted in the model. For the roof surface,
the formulation of radiation budget becomes very simple, because it is not necessary to consider
the radiation which is reflected or emitted from other element.

dSr = F0br + F0dr uSr = αr(F0br + F0dr) (2.8)

dLr = F0tr uLr = σεrT
4
r Vuc (2.9)

Rnr = dSr + dLr − uSr − uLr (2.10)

2.2.3 Radiation budget at wall surface

In case of wall surface, the radiation scattered from facing wall and road are considered (single
scatter only). In this model, the direction of street canyon is not considered, and it is described
two dimensionally (see Figure 2.1, 2.2). And the wall which receive the direct beam is treated
as ”left” wall (right wall is shadow). In fact, the wall and street face to all directions. When the
sun moves, some of wall which faces to the sun will receive the direct beam, and others not. This
direct beam receiving wall is called as ”left” wall.
The radiation incident to the left wall (dSlw) consist of direct beam from sun and reflected radiation
from road (reflection from right wall is omitted (double scatter)).
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In the calculation of road reflection, view angle from the center point of direct beam receiving
zone and diffuse radiation receiving zone are used (see Figure 2.3). These angles (φ and β in
Figure 2.3) are expressed as follows.

φ = arctan
2kh0

bw(1 − Vuc)

Vuc
− kh0 tan θ

, β =
π − skyg

2
(2.11)

The radiation incident to the right wall (dSrw) consist of reflected radiation from left wall and
road. In the calculation of road and wall reflection, view angle from the center point of direct
beam receiving zone and left wall are used (see Figure 2.3). These angles (ψ and ν in Figure
2.3) are expressed as follows.

ψ = arctan
2kh0

bw(1 − Vuc)

Vuc

+ kh0 tan θ

, ν = π − 2skyw (2.12)

Reflection at wall and road is expressed by reflectance (αw, αg), and only single scattering is
treated.

dSlw = F0bw + F0dw + αwF0dw
π − 2skyw

π
+ αgF0bg(

φ

π
) + αgF0dg

π − skyg

2π
(2.13)

uSlw = αw(F0bw + F0dw) (2.14)

dSrw = F0dw + αw(F0bw + F0dw)
π − 2skyw

π
+ αgF0bg(

ψ

π
) + αgF0dg

π − skyg

2π
(2.15)

uSrw = αwFodw (2.16)

Note that F0dw in above equations are assumed to be zero.

left wall

1. direct beam ⇒ left wall

2. direct beam ⇒ road (φ) ⇒ left wall

3. diffuse ⇒ road (β) ⇒ left wall

right wall

1. direct beam ⇒ left wall (ν) ⇒ right wall

2. direct beam ⇒ road (ψ) ⇒ right wall

3. diffuse ⇒ road (β) ⇒ right wall

In case of wall, no long-wave radiation is received directly from the sky. Long-wave radiation
emitted from road and facing wall are received according to the view angle (β and ν). In this
case, left and right wall are treated in the same way. As for emission from wall, ratio of wall area
to road area is multiplied.

dLw = σεugT
4
ug

π − skyg

2π
(1 − Vuc) + σεwT

4
w

π − 2skyw

π
(1 − Vuc)

kh0

bw
(1−Vuc)

Vuc

(2.17)

uLw = σεwT
4
w(1 − Vuc)

kh0

bw
(1−Vuc)

Vuc

(2.18)

Rnw = dSlw + dSrw + 2dLw − uSlw − uSrw − 2uLw (2.19)

2.2.4 Radiation budget at road surface

There are two cases for direct beam radiation to incident to the road or not, depending on the
solar angle. When there is no direct beam on the road, F0bg in eq.(2.20), (2.21) becomes zero.
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As for the fraction of reflected radiation from the wall, view angle is from the center point of the
wall. Note that the direct beam does not incident to left wall, F0bw in eq. (2.20) is only for left
wall. Reflected short-wave radiation and emitted long-wave radiation are described in the same
way as mentioned above.

dSug = F0bg + F0dg + αw(F0bw + 2F0dw)
skyw

π
(2.20)

uSug = αug(F0bg + F0dg) (2.21)

dLug = F0tg + 2σεwT
4
w

skyw

π
(1 − Vuc)

kh0

bw
(1−Vuc)

Vuc

(2.22)

uLug = σεugT
4
ug(1 − Vuc) (2.23)

Rnug = dSug + dLug − uSug − uLug (2.24)

2.2.5 Upward radiation from street canyon

Some of the incident radiation is reflected by reflectance (α). And, as mentioned above, some of
the reflected radiation from wall and road will be received again by another element, and the rest
of the reflected radiation will return to the sky. The partitioning of these radiations is described
in 2.2.3 and 2.2.4. The total of these returned radiations is upward short-wave radiation from
the street canyon to the sky (uSm). Ratio of uSm to incident radiation (above the roof level) is
the bulk albedo of street canyon system (roof-wall-road union).

uSm = uSr + (uSlw + uSrw)
skyw

π
+ αugF0dg

skyg

π
+ αugF0bg

(
1 − φ+ ψ

π

)
(2.25)

All the emitted long-wave radiation from roof will return to the sky. Long-wave radiation emitted
from wall and road will return to the sky according to the sky-view factor (skyw, skyg). The
total of these returned radiations is upward long-wave radiation from the street canyon to the sky
(uLm).

uLm = uLr + 2uLw
skyw

π
+ uLug

skyg

π
(2.26)

2.2.6 Total net radiation and upward radiation

The radiation components presented above are those for the k-story street canyon. If we consider
the various height of canyon, the total radiation absorbed by roof, wall, and road and total upward
radiation from canyon system should be integrated using the roof height distribution (fractional
area of each canyon).

Rnr,total =
n∑

k=1

Rnr,kr(k) Rnw,total =
n∑

k=1

Rnw,kr(k) Rnug,total =
n∑

k=1

Rnug,kr(k) (2.27)

uSm,total =
n∑

k=1

uSm,kr(k) uLm,total =
n∑

k=1

uLm,kr(k) (2.28)

where
n∑

k=1

r(k) = 1 (2.29)
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2.3 Turbulent transfer process

In this section, aerodynamic resistences are formulated according to the assumed arrangement of
roughness element (buildings) and turbulent transfer theory.

∆x

∆x

bw
bw

kh0

Figure 2.4: Arrangement of roughness element

1

2

k

k+1

n
story

r(1) r(2) r(k) r(k+1) r(n)....... .......

Σ r(k) = 1
k=1

n

a(k)

Figure 2.5: Roof height distribution

In the calculation of turbulent transfer process, each roughness element is expressed by a square
prism (see Figure 2.4). All prisms are assumed to have the same width (bw) and to be evenly
spaced, while they have their own roof heights (k h0 for k-story building).
For simplicity, a(k) is defined as a total of roof height distribution (r(k)) from k-story to the top
(n-story). And also Ab is defined as a total of roof height distribution (r(k)) multiplied by the
height (k).

a(k) =
n∑

i=k

r(i) (2.30)

Ab =
n∑

k=1

r(k) k (2.31)

Where, r(k) is fraction of k-story building.

n∑
k=1

r(k) = 1 (2.32)

If the horizontal scale of a grid area is ∆x, total roof area of k-story buildings is Vucr(k)(∆x)
2.

While roof area of one building is b2w. Then number of k-story building is Vucr(k)(
∆x
bw

)2.
Therefore, total building frontal area per unit area (Ss) and total building surface area per unit
area (Sr) are expressed as follows.

Ss =
n∑

k=1

bwk h0 Vucr(k)
(

∆x

bw

)2

/(∆x)2 =

(
h0

bw

)
Vuc Ab (2.33)

Sr = Vuc + 4 Ss (2.34)

The building frontal area density in k-story layer per unit area (As(k)) is

As(k) =
n∑

i=k

bw h0 Vucr(k)
(

∆x

bw

)2

/(∆x)2 =

(
h0

bw

)
Vuc a(k) (2.35)
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2.3.1 Wind profile and momentum flux

As the density of roughness elements increases, so does the roughness (z0) of the surface. But a
point comes where adding new elements merely serves to reduce the effective drag of those already
present due to mutual sheltering. As Shaw and Pereira (1982) note, at this point the increase in
drag is offset by an increase in zero-plane displacement (d0) (Grimmond et al. (1999)).
The dependence of z0 and d0 on the size, shape, density, and distribution of surface elements has
been studied using wind tunnels, analytical investigations, and field observation.
In this model, we use a formulation of z0 and d0 following Macdonald et al. (1998). In their
formula, both horizontal fraction of roughness element (plan area density) and vertical section
(frontal area density) are considered. In our model, we replace frontal area density with total
building frontal area per unit area (Ss) and roughness height with mean building height (zave).

zave = Abh0 (2.36)

d0 = zave

[
1 + 4.43−Vuc(Vuc − 1)

]
(2.37)

z0 = (zave − d0) exp


−

[
0.5

Cd

κ2

(
1 − d0

zave

)
Ss

]−0.5

 (2.38)

Assuming that the wind speed profile within canopy air space follows the exponential function by
an attenuation coefficient aw, wind speed at the k-story layer (u(k)) is expressed as follows.

u(k) = u2 exp

[
−aw

(
1 − k

n

)]
(2.39)

Where u2 is wind speed at the top of the canopy (z = z2 = nh0). According to Macdonald (2000),
aw can be approximated by linear relationship with frontal area density (aw = 9.6Ss).
As a first guess, we assume a neutral condition for describing the log-linear profile of wind speed
above the canopy. Then, a friction velocity (u∗) and u2 are obtained from um.

u∗ =
κum

ln
(

zm−d0

z0

) (2.40)

u2 =
u∗
κ

ln

(
z2 − d0

z0

)
(2.41)

As for the profile of vertical eddy diffusivity (Km), it is propotional to the height in log-linear
region (above canopy). And Km is propotional to the local wind speed within canopy.

Km(k) = κu∗(kh0 − d0) (k ≥ n) (2.42)

Km(k) = ηu(k) (k ≤ n) (2.43)

η is obtained from the continuity of Km at canopy top height (k = n).

η =
κu∗(nh0 − d0)

u2
(2.44)

2.3.2 Aerodynamic resistance

Now aerodynamic resistances (rr, rw, rdu, and rau) can be calculated using the profiles of u and
Km. Transfer pathways of sensible heat in the urban canopy model are shown in Figure 2.6.

1. from the roof to the canyon air space (rr)
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2. from the wall to the canyon air space (rw)

3. from the road to the canyon air space (rdu)

4. from the canyon air space to the reference level (rau)

In case of urban canopy, wall (frontal area) is important for momentum absorption, and roof
(surface area) is so for scalar (heat and water vapor) transfer. In case of vegetation canopy, leaf
is important for both momentum and scalar transfer. This is a fundamental difference between
urban canopy and vegetation canopy.

Thus, in calculating bulk aerodynamic resistances of roof and wall, surface area densities (Arr(k),
Arw(k)) are used instead of frontal area density (As(k)).

1

rr
=

n∑
k=1

Arr(k)
√
U(k)

ps Cs
h0 =

Vuc

ps Cs

n∑
k=1

(
r(k)

√
U(k)

)
(2.45)

1

rw

=
n∑

k=1

Arw(k)
√
U(k)

ps Cs

h0 =
4Vuc

ps Cs

(
h0

bw

)
n∑

k=1

(
a(k)

√
U(k)

)
(2.46)

The extent to which the drag on individual roughness elements is reduced by the presence of
neighbours was expressed by Thom (1971) in terms of a shelter factor. But shelter factor (ps) is
still not well understood. It accounts for the observation that the drag coefficient of an ensemble
of roughness elements is less than the sum of their individual drag coefficients, presumably due
to mutual sheltering effects. Using the same relationship as the case for vegetation canopy, ps is
expressed by power function, exept that leaf area density is replaced by frontal area density.

ps = 1 +
(
Ss

nh0

)0.6

= 1 +
(
VucAb

nbw

)0.6

(2.47)

This relationship should be investigated for the array of different height of roughness elements.

The road to canopy air space resistance (rdu) is defined as follows.

rdu =
∫ ha

0

1

Km
dz =

kha∑
k=1

h0

Km(k)
(2.48)

Canopy source height (ha = khah0) is assumed to be equal to the center of action of rr and rw

within the canopy as obtained from the solution of

kha∑
k=1

(
r(k) + 4

(
h0

bw

)
a(k)

)√
U(k) �

n∑
k=kha

(
r(k) + 4

(
h0

bw

)
a(k)

)√
U(k) (2.49)

Resistance between canopy air space and reference height (rau) can be described by integration of
Km over the distance from ha to zm.

rau =
∫ nh0

ha

1

Km

dz +
∫ zm

nh0

1

Km

dz =
n∑

k=kha

h0

Km(k)
+

1

κu∗
ln

(
zm − d0

nh0 − d0

)
(2.50)

Above formulation is based on the neutral condition. The nonneutral adjustment to aerodynamic
resistances is executed according to Monin-Obukov similarity (see next section).
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2.4 Sensible heat flux

If we assume no storage of heat at any of the junctions of the resistance network shown in Figure
2.6, we can write the area-averaged sensible heat fluxes from the roof, wall, and road as follows.

Hr = A(Tr − Tau), A = ρaCp/rr (2.51)

Hw = B(Tw − Tau), B = ρaCp/rw (2.52)

Hug = C(Tug − Tau), C = ρaCp/rdu (2.53)

Hr +Hw +Hug = D(Tau − Tm), D = ρaCp/rau (2.54)

Canyon air space temperature (Tau) can be eliminated by asuuming that energy fluxes from roof,
wall, and road are all transfered to atmospheric boundary layer, in another word, no energy is
stored in canopy air space.

Tau =
A · Tr +B · Tw + C · Tug +D · Tm

A+B + C +D
(2.55)

Tw

Tug

Wall

Urban 
Ground

Hw
Hug

Hua

Tm

Tau
Tr

rau

rdu

Hr

rr

rw
 Roof

Figure 2.6: Transfer pathways of sensible
heat flux and aerodynamic resistances
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Ground

Eug

Eua rau

rdu

Er
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 Roof

me

aue

e (Tug)*Mug

e (Tr)*Mr

rw

Ew
Wall

Figure 2.7: Transfer pathways of latent
heat flux and aerodynamic resistances

Now atmospheric stability can be calculated from the temperature difference between canyon air
space and reference height (Tau − Tm).

H = ρaCp(Tau − Tm)κu∗/ΨH (2.56)

L = −ρaCpTmu
3
∗/κgH (2.57)

ζ = zm/L (2.58)

In the urban area, sensible heat flux is usually dominant to latent heat flux. Therefore, only
sensible heat flux is considered in eq.(2.57). If ζ is not close to zero, wind profile used in the
previous section should be modified by integrated universal function.
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when ζ < 0 (unstable)

ΨM = ln

(
zm − d0

z0

)
+ ln

(x2
0 + 1)(x0 + 1)2

(x2 + 1)(x+ 1)2
+ 2(tan−1 x− tan−1 x0) (2.59)

ΨH = ln

(
zm − d0

z0

)
+ 2 ln

(
y0 + 1

y + 1

)
(2.60)

x = (1 − 16ζ)1/4, x0 = (1 − 16ζ0)
1/4, y = (1 − 16ζ)1/2, y0 = (1 − 16ζ0)

1/2 (2.61)

when ζ ≥ 0 (stable)

ΨM = ln

(
zm − d0

z0

)
+

7

3
ln

1 + 3ζ + 10ζ3

1 + 3ζ0 + 10ζ3
0

(2.62)

ΨH = ln

(
zm − d0

z0

)
+ 400 ln

1 + 7/400ζ + 0.005ζ2

1 + 7/400ζ0 + 0.005ζ2
0

(2.63)

u∗ = κum/ΨM (2.64)

Now u∗ from eq.(2.40) (neutral value) is replaced by u∗ from eq.(2.64) (nonneutral value), and
go back to eq.(2.41). The above procedure is repeated until convergence condition (in ζ) is

obtained. Note that ΨH in eq.(2.56) is equal to ln
(

zm−d0

z0

)
for the first iteration step.

2.5 Rainfall interception and interception loss

The interception of rainfall and evaporation of intercepted water is modeled very simply. Basically,
each components of urban canopy model (roof, wall, road) is assumed to be impermeable. And,
different from the case for vegetation, roof is only one layer (interception area is much smaller
than vegetation canopy).

The maximum values for water store (Si) are set
to each story. If the water store (Mi) exceeds the
maximum value, the drainage (Di) occurs.

Pr = P Vuc (2.65)

Dr =

{
= 0 when Mr < Sr

= Pr when Mr = Sr
(2.66)

Pw = Dr (2.67)

Dw =

{
= 0 when Mw < Sw

= Dr when Mw = Sw
(2.68)

Pug = P (1 − Vuc) +Dw (2.69)

Dug =

{
= 0 when Mug < Sug

= Pug when Mug = Sug
(2.70)

Dug is the surface runoff from urban area. It will
flow into water body, or it will be used as input of
runoff model.

Urban 
Ground

 Roof

Mug

Mr

Wall
Mw

P

VucP

(1-Vuc)P
Dr

Dw Dug

Er Ew

Eug

Figure 2.8: Rainfall interception model
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The quantities Mr,Mw,Mug are used to determine the fractional wetted areas of the roof, wall,
and road (Wr,Ww,Wug). So the rates of evaporation from the wetted portions of the roof, wall,
and road are expressed as follows.

λEr = E[e∗(Tr) − eau], E =
ρaCp

γ

Wr

rr
(2.71)

λEw = F [e∗(Tw) − eau], F =
ρaCp

γ

Ww

rw
(2.72)

λEug = G[e∗(Tug) − eau], G =
ρaCp

γ

Wug

rdu
(2.73)

λEr + λEw + λEug = H [e∗(eau) − em], H =
ρaCp

γ

Wr

rau
(2.74)

(2.75)

eau can be eliminated by asuuming that water vapor fluxes from roof, wall, and road are all
transfered to atmospheric boundary layer, in another word, no water vapor is stored in canopy air
space.

eau =
E · e∗(Tr) + F · e∗(Tw) +G · e∗(Tug) +H · em

E + F +G+H
(2.76)

Wr =

{
= Mr/Sr when e∗(Tr) > eau

= 1 when e∗(Tr) ≤ eau
(2.77)

Ww =

{
= Mw/Sw when e∗(Tr) > eau

= 1 when e∗(Tr) ≤ eau
(2.78)

Wug =

{
= Mug/Sug when e∗(Tug) > eau

= 1 when e∗(Tug) ≤ eau
(2.79)

(2.80)

It is assumed in eq.(2.71), (2.72), (2.73) that wet and dry parts of the surface are at the same
temperature. Basically, the maximum water storage is much smaller than vegetation canopy, and
the duration time of water to present on the surface is very short, it is better to use the same
temperature for wet and dry parts.

2.6 Prognostic variables and their governing equations

Urban canopy model has seven prognostic physical-state variables: four temperatures (for roof,
Tr, for wall, Tw, for road, Tug, and for under ground, Tdu); three interception water stores (for
roof, Mr, for wall, Mw, and for road Mug). Where Tdu is defined as mean value of Tug over one
day.

2.6.1 Governing equations for temperatures

The governing equations for the four temperatures are based on force-restore method (Bhumralkar,
1975; Blackadar, 1976). The force-restore approximation relies on the analytical solution of the
heat conduction equation under periodic forcing, which is used to parameterize the almost periodic
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daily ground heat flux. In this way, a very simple and efficient but reasonably accurate description
of the temperature dynamics can be achieved.
In this model, prognostic equation for surface temperature incorporates both surface energy flux
(atmospheric forcing term) and soil heat flux (restoring term) to reproduce the diurnal variation
of surface temperature realistically.
In case of the urban canopy model, three surface temperatures (Tr, Tw, Tug) are predicted. As for
the restoring term for Tr and Tw, a inner building temperature (Tbi), which may be controlled or
maintained by human activity, is used. Furthermore, artificial heat source (Qm

1 ), which is a result
of human activity, is added to the forcing term. So, the prognostic equations for temperatures in
urban canopy model are expressed as follows.

Cr
∂Tr

∂t
= Rnr −Hr − λEr − ωCr(Tr − Tbi) +QmVuc (2.81)

Cw
∂Tw

∂t
= Rnw −Hw − λEw − ωCw(Tw − Tbi) +QmAw (2.82)

Cug
∂Tug

∂t
= Rnug −Hug − λEug − ωCug(Tug − Tdu) +Qm(1 − Vuc) (2.83)

Cdu
∂Tdu

∂t
= Rnug −Hug − λEug − ωCdu(Tdu − Tbi) +Qm(1 − Vuc) (2.84)

The effective heat capacities (Cr, Cw, Cug, Cdu) are defined theoretically using specific heat and
thermal conductivity.

Ci =

(
ciki

2ω

)1/2

(i=r,w,ug) (2.85)

Cdu =
√

365Cug (2.86)

where
Qm = anthropogenic heat source (Wm−2)
Ci(i = r, w, ug, du) = effective heat capacity (J m−2K−1)

As for eq. (2.86), heat capacity is propotional to a square root of cycle. Tdu is defined as mean
value of Tug over one day, and Tdu is expected to have seasonal cycle (one year).
Effective heat capacity is impotant for reproducing the amplitude and phase of diurnal cycle.
Basically, actual values of thermal properties (ci, ki) are dependent on material (concrete, asphalt,
tile, etc.). In practice, these parameters are adjusted to reproduce the diurnal cycle, since urban
canopy consists of different kinds of materials.

2.6.2 Governing equations for intercepted water

The governing equations for the three interception water stores are expressed in the same formula.

∂Mi

∂t
= Pi −Di − Ei

ρw
(i = r, w, ug) (2.87)

This is simple water budget equation for water store. In the calculation of water store (Mi),
evaporation (Ei) is modified if eq.(2.87) produces a negative value of Mi.

1Usually, Tbi is controlled by air conditioner. Then, Qm should be related to Tbi or temperature difference with
outside (Tbi − Tm). Furthermore, additional energy will be released as a result of domestic use. There is no good
way to formulate Tbi and Qm at present. Therefore, they are treated as parameter (prescribed, changable with
time). The role of Qm will be discussed in the later section (see ??).
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2.7 Numerical solution of prognostic equations

In the numerical solution of the prognostic equations for temperatures (Tr, Tw, Tug), we make use
of the fact that the storage terms, involving Ci(i = r, w, ug), are small relative to the energy
fluxes Rni, λEi, andHi(i = r, w, ug). These values make eq. (2.81), (2.82), (2.83) fast response
equations so that changes in Tr, Tw, Tug, even over a time step as short as an hour, can have
a significant feedback on the magnitude of the energy fluxes. The energy fluxes are explicit
functions of atmospheric boundary conditions, prognostic variables, and aerodynamic resistances.
Prognostic equations are solved by an implicit backward method using partial derivatives of each
term.
First, considering the energy fluxes in prognostic equations are functions of temperature, partial
derivatives are calculated in subroutine partial. Then, prognostic equations are expressed in ex-
plicit backward-differencing form and a set of linear simultaneous equations regarding the changes
in temperatures over a time step (∆t) are obtained.
Not only energy fluxes but also heat exchange terms have dependency on temperatures. Now
prognostic equations can be written in discrete-time form.

Cr
∆Tr

∆t
= Rnr −Hr − λEr − ωCr(Tr − Tbi) +QmVuc

+
∂Rnr

∂Tr
∆Tr − (

∂Hr

∂Tr
∆Tr +

∂Hr

∂Tw
∆Tw +

∂Hr

∂Tug
∆Tug)

−(
∂λEr

∂Tr
∆Tr +

∂λEr

∂Tw
∆Tw +

∂λEr

∂Tug
∆Tug) − ωCr∆Tr (2.88)

Cw
∆Tw

∆t
= Rnw −Hw − λEw − ωCw(Tw − Tbi) +QmAw

+(
∂Rnw

∂Tw
∆Tw +

∂Rnw

∂Tug
∆Tug) − (

∂Hw

∂Tw
∆Tw +

∂Hw

∂Tr
∆Tr +

∂Hw

∂Tug
∆Tug)

−(
∂λEw

∂Tw
∆Tw +

∂λEw

∂Tr
∆Tr +

∂λEw

∂Tug
∆Tug) − ωCw∆Tw (2.89)

Cug
∆Tug

∆t
= Rnug −Hug − λEug − ωCug(Tug − Tdu) +Qm(1 − Vuc)

+(
∂Rnug

∂Tug
∆Tug +

∂Rnug

∂Tw
∆Tw) − (

∂Hug

∂Tug
∆Tug +

∂Hug

∂Tr
∆Tr +

∂Hug

∂Tw
∆Tw)

−(
∂λEug

∂Tug
∆Tug +

∂λEug

∂Tr
∆Tr +

∂λEug

∂Tw
∆Tw) − ωCug(∆Tug − ∆Tdu) (2.90)

Cdu
∆Tdu

∆t
= Rnug −Hug − λEug + ωCdu(Tbi − Tdu) +Qm(1 − Vuc)

+(
∂Rnug

∂Tug
∆Tug +

∂Rnug

∂Tw
∆Tw) − (

∂Hug

∂Tug
∆Tug +

∂Hug

∂Tr
∆Tr +

∂Hug

∂Tw
∆Tw)

−(
∂λEug

∂Tug
∆Tug +

∂λEug

∂Tr
∆Tr +

∂λEug

∂Tw
∆Tw) − ωCdu∆Tdu (2.91)

If it is written in matrix form,

KX = Y −→ X = K−1Y

K =



K1,1 K1,2 K1,3 K1,4

K2,1 K2,2 K2,3 K2,4

K3,1 K3,2 K3,3 K3,4

K4,1 K4,2 K4,3 K4,4


 X =




∆Tr

∆Tw

∆Tug

∆Tdu



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where

K1,1 = Cr

∆t
− ∂Rnr

∂Tr
+ ∂Hr

∂Tr
+ ∂λEr

∂Tr
+ ωCr K1,2 = ∂Hr

∂Tw
+ ∂λEr

∂Tw

K1,3 = ∂Hr

∂Tug
+ ∂λEr

∂Tug
K1,4 = 0

K2,1 = ∂Hw

∂Tr
+ ∂λEw

∂Tr
K2,2 = Cw

∆t
− ∂Rnw

∂Tw
+ ∂Hw

∂Tw
+ ∂λEw

∂Tw
+ ωCw

K2,3 = −∂Rnw

∂Tug
+ ∂Hw

∂Tug
+ ∂λEw

∂Tug
K2,4 = 0

K3,1 = ∂Hug

∂Tr
+ ∂λEug

∂Tr
K3,2 = −∂Rnug

∂Tw
+ ∂Hug

∂Tw
+ ∂λEug

∂Tw

K3,3 = Cug

∆t
− ∂Rnug

∂Tug
+ ∂Hug

∂Tug
+ ∂λEug

∂Tug
+ ωCug K3,4 = −ωCg

K4,1 = ∂Hug

∂Tr
+ ∂λEug

∂Tr
K4,2 = −∂Rnug

∂Tw
+ ∂Hug

∂Tw
+ ∂λEug

∂Tw

K4,3 = −∂Rnug

∂Tug
+ ∂Hug

∂Tug
+ ∂λEug

∂Tug
K4,4 = Cdu

∆t
+ ωCdu

Y =




Rnr −Hr − λEr − ωCr(Tr − Tbi) +QmVuc

Rnw −Hw − λEw − ωCw(Tw − Tbi) +QmAw

Rng −Hug − λEug − ωCug(Tug − Tdu) +Qm(1 − Vuc)
Rng −Hug − λEug + ωCdu(Tbi − Tdu) +Qm(1 − Vuc)




Above equations can be solved in terms of temperature changes (∆Tr,∆Tw,∆Tug,∆Tdu). Each
temperatures are updated to the value at time t0 + ∆t by adding temperature changes to the
initial value at time t0. Furthermore, energy fluxes are modified to show the values averaged over
a time step (between time t0 and time t0 + ∆t).

Rn′
r = Rnr +

1

2

∂Rnr

∂Tr
∆Tr (2.92)

Rn′
w = Rnw +

1

2
(
∂Rnw

∂Tw
∆Tw +

∂Rnw

∂Tug
∆Tug) (2.93)

Rn′
g = Rng +

1

2
(
∂Rnug

∂Tw
∆Tw +

∂Rnug

∂Tug
∆Tug) (2.94)

H ′
r = Hr +

1

2
(
∂Hr

∂Tr
∆Tr +

∂Hr

∂Tw
∆Tw +

∂Hr

∂Tug
∆Tug) (2.95)

H ′
w = Hw +

1

2
(
∂Hw

∂Tr
∆Tr +

∂Hw

∂Tw
∆Tw +

∂Hw

∂Tug
∆Tug) (2.96)

H ′
g = Hg +

1

2
(
∂Hug

∂Tr
∆Tr +

∂Hug

∂Tw
∆Tw +

∂Hug

∂Tug
∆Tug) (2.97)

λE ′
r = λEr +

1

2
(
∂λEr

∂Tr
∆Tr +

∂λEr

∂Tw
∆Tw +

∂λEr

∂Tug
∆Tug) (2.98)

λE ′
w = λEw +

1

2
(
∂λEw

∂Tr
∆Tr +

∂λEw

∂Tw
∆Tw +

∂λEw

∂Tug
∆Tug) (2.99)

λE ′
ug = λEug +

1

2
(
∂λEug

∂Tr
∆Tr +

∂λEug

∂Tw
∆Tw +

∂λEug

∂Tug
∆Tug) (2.100)
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Following Section 2.2, five partial derivatives of net radiation fluxes (Rnr, Rnw, Rnug) are ob-
tained as follows.

∂Rnr

∂Tr

= −4σεrT
3
r Vuc (2.101)

∂Rnw

∂Tw
= 4σεwT

3
w

π − 2skyw

π
(1 − Vuc)

n∑
k=1

kh0

bw
(1−Vuc)

Vuc

− 4σεwT
3
w(1 − Vuc)

n∑
k=1

kh0

bw
(1−Vuc)

Vuc

(2.102)

∂Rnw

∂Tg
= 4σεgT

3
g

π − skyg

2π
(1 − Vuc) (2.103)

∂Rnug

∂Tug
= −4σεugT

3
ug(1 − Vuc) (2.104)

∂Rnug

∂Tw

= 8σεwT
3
w

skyw

π
(1 − Vuc)

n∑
k=1

kh0

bw
(1−Vuc)

Vuc

(2.105)

Following Section 2.4, nine partial derivatives of sensible heat fluxes (Hr, Hw, Hug) are obtained
as follows.

Tau =
A · Tr + B · Tw + C · Tug + D · Tm

A + B + C + D
(2.106)

∂Hr

∂Tr
=

A(B + C + D)
A + B + C + D

,
∂Hr

∂Tw
=

−AB

A + B + C + D
,

∂Hr

∂Tug
=

−AC

A + B + C + D
(2.107)

∂Hw

∂Tw
=

B(A + C + D)
A + B + C + D

,
∂Hw

∂Tr
=

−AB

A + B + C + D
,

∂Hw

∂Tug
=

−BC

A + B + C + D
(2.108)

∂Hug

∂Tug
=

C(A + B + D)
A + B + C + D

,
∂Hug

∂Tr
=

−AC

A + B + C + D
,

∂Hug

∂Tw
=

−BC

A + B + C + D
(2.109)

Following Section 2.5, nine partial derivatives of latent heat fluxes (λEr, λEw, λEug) are obtained
as follows. Where, e′∗(Ti) is a slope of saturation vapor pressure curve at Ti.

eau =
E · e∗(Tr) + F · e∗(Tw) + G · e∗(Tug) + H · em

E + F + G + H
(2.110)

∂λEr

∂Tr
=

e′∗(Tr)E(F + G + H)
E + F + G + H

,
∂λEr

∂Tw
=

−e′∗(Tw)EF

E + F + G + H
,

∂λEr

∂Tug
=

−e′∗(Tug)EG

E + F + G + H
(2.111)

∂λEw

∂Tw
=

e′∗(Tw)F (E + G + H)
E + F + G + H

,
∂λEw

∂Tr
=

−e′∗(Tr)EF

E + F + G + H
,

∂λEw

∂Tug
=

−e′∗(Tug)FG

E + F + G + H
(2.112)

∂λEug

∂Tug
=

e′∗(Tug)G(E + F + H)
E + F + G + H

,
∂λEug

∂Tr
=

−e′∗(Tr)EG

E + F + G + H
,

∂λEug

∂Tw
=

−e′∗(Tw)FG

E + F + G + H
(2.113)



Chapter 3

Water Body model

In this chapter, water body model to be used as sub-model of land-surface scheme is formulated
based on force-restore model. A dataset from flux measurement system of the Lake Biwa Project
(see Appendix ??) is used for the development and validation of the water body model. Per-
formance of the produced model is also shown by numerical simulaton. Variables and parameters
used in this chapter are listed in Table 3.1. Physical constants are listed in Table A.1 in
Appendix A.

Table 3.1: Variables and parameters in the water body model
symbol definition unit

zm reference height m
um wind speed at reference height m s−1

Tm air temperature at reference height K
em vapor pressure at reference height mb
qm specific humidity at reference height kg kg−1

µ cosine of zenith angle of incident beam
Twb temperature of surface layer K
Tdw temperature of deep layer K
qwb saturation specific humidity at Twb kg kg−1

Rnwb net radiation flux W m−2

Fs,wb short-wave radiation absorbed by water body W m−2

Hwb sensible heat flux W m−2

Ewb evaporation rate kg m−2S−1

τwb momentum flux absorbed by water surface kg m−1s−2

u∗ friction velocity m s−1

z0 surface roughness m
L Monin-Obukov length m
ζ non-dimensional stability factor
raw aerodynamic resistance between water surface and reference height s m−1

Cwb effective heat capacity of surface layer J m−2K−1

Cdw effective heat capacity of deep layer J m−2K−1

Zs effective depth of surface layer m
β short-wave radiation penetration factor
α albedo of water surface

α1, α2 parameter for albedo model (α = α1µ
α2)

27
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3.1 Energy balance at water surface

Figure 3.1 shows an example of seasonal variation of energy budget at the Lake Biwa in Japan.
Horizontal axis is time (day) from 25th July in 1999 to 24th July in 2000. Upper figure is a time
series of daily data, and lower one is a moving average of 15 days.
The net radiation (Rn) has its maximum in July and minimum (nearly zero) in December. Very
small net radiation in December can be explained by small sunshine and large upward long-wave
radiation. Observation site is located at the north part of the Lake Biwa. Then, sunshine is small
(almost cloudy) in winter season. Furthermore, due to the relatively warm temperature, upward
long-wave radiation is larger than downward.
In spite of much net radiative energy, latent heat (evaporation) is not so large from early spring to
late summer. On the other hand, latent heat (evaporation) is large (even larger than net radiation)
during autumn and winter season.
What I want to say here is that there is a phase lag between seasonal cycle of net radiation (Rn),
latent heat (λE), and sensible heat (H). This means that significant part of energy is not used
(or released) in a diurnal cycle of energy budget, and handed over in a seasonal cycle. This kind
of seasonal dynamics of energy budget is peculiar to water body, especially in deep lake.
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Figure 3.1: Seasonal variation of energy budget at the north part of the Lake Biwa (1999/7/25-
2000/7/24). upper: daily average, lower: moving average of 15 days
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3.2 Albedo and radiation budget

Figure 3.2 shows the seasonal variation of lake surface albedo from 25th July in 1999 to 24th
July in 2000 by moving average of 15 days. Albedo becomes large in winter season and small in
summer season. This is deeply related to the change in the solar zenith angle. Figure 3.3 shows
the relationship between the albedo (α) and cosine of zenith angle of incident solar radiation (µ).
In this figure, data are selected according to the following criteria to see this dependency clearly.

S↓ ≥ 0.75 × Stop S↓ ≥ 50 (Wm−2) µ ≥ 0.1

where
S↓ = downward short-wave radiation observed at the surface
Stop = downward short-wave radiation at the top of atmosphere (theoretical value)
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Figure 3.2: Albedo of the Lake Biwa (moving
average of 15 days, 1999/7/25-2000/7/24)
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When the sky is overcast or partly clouded, the propotion of direct beam radiation component
becomes smaller than that of diffuse component. In that case, albedo shows the weakly dependency
on the solar zenith angle. Anyway, the reflectance of water surface has strong dependency on µ for
direct beam component. In the SiBUC model, following Goudriaan (1971), downward short-wave
radiation is divided into four components (Fvb (visible-beam), Fvd (visible-diffuse), Fnb (near-
infrared-beam), and Fnd (near-infrared-diffuse)) in the subroutine goudriaan (see Appendix
??) by the need of vegetation model (SiB). Then, we can treat direct beam component and diffuse
component separately. The radiation budget for the water surface can be written as follows.

αb = aµb (3.1)

Rnwb = (Fvb + Fnb)(1 − αb) + (Fvd + Fnd)(1 − αd) + Ftd − εwσT
4
wb (3.2)

Where, αb and αd are reflectance for direct beam component and diffuse component respectively.
Unfortunately, direct beam component and diffuse component was not observed separately, we
couldn’t fix the relationship of eq.(3.1) directly. Actually, it is impossible to measure the propo-
tion of reflected direct beam and reflected diffuse radiation. Therefore, the αb and αd are assumed
to be equal, and the parameters in the relationship between reflectance and µ (eq.(3.3)) are
decided through the the comparison of simulated and observed values (see Section ??).

αb = αd = α1µ
α2 (3.3)
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3.3 Turbulent transfer and surface fluxes

Turbulent transfer process is very simple for the case of water body. Basically, the profile of
wind, air temperature, and vapor pressure is expressed by log-linear law when atmosphere is in
neutral condition. According to the Monin-Obukov similarity, aerodynamic resistance is calculated
considering atmospheric stability.
Following Kondo(???), roughness is expressed by a function of friction velocity (eq.(3.4)). Friction
velocity is a function of atmospheric stability. Stability is defined as a function of friction velocity
and surface flux (eq.(3.7)). And the surface flux itself is a function of stability. Therefore, these
values are determined through iteration procedure from a initial guess.

• initial guess
u∗ = 0.001 (m s−1), neutral condition (ζ =0)

• roughness and friction velocity (1st)

u∗c = 100 × u∗
z0c = a× ub

∗c (3.4)

z0 = 0.01 × z0c

u∗ = κum/ ln(zm/z0) (3.5)

when u∗c ≤ 6.89(cm)
a = 1.69 × 10−2 b = -1.0

when u∗c > 6.89(cm)
a = 1.65 × 10−4 b = 1.4

Where, z0c and u∗c are expressed in a
unit of (cm), and z0 and u∗ are in (m).
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Figure 3.4: Relationship between friction velocity
and roughness

• stability (1st)

H = ρCp(Twb − Tm)κu∗/ ln(zm/z0h), E = ρCp(qwb − qm)κu∗/ ln(zm/z0h) (3.6)

L = −ρCpTmu
3
∗/(κgHv), Hv = H + 0.61(1 + 0.61qm)TmCpE (3.7)

ζ = zm/L, ζ0 = z0/L (3.8)

In general, roughness for temperature and humidity are larger than that for momentum in
the case of water surface. In this model, these are assumed to be equal to z0h(= 3z0).

• integrated universal function

when ζ < 0

ΨM = ln
(
zm

z0

)
+ ln

(x2
0 + 1)(x0 + 1)2

(x2 + 1)(x+ 1)2
+ 2(tan−1 x− tan−1 x0) (3.9)

ΨH = ln
(
zm

z0h

)
+ 2 ln

(
y0 + 1

y + 1

)
(3.10)

x = (1 − 16ζ)1/4, x0 = (1 − 16ζ0)
1/4, y = (1 − 16ζ)1/2, y0 = (1 − 16ζ0)

1/2 (3.11)
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when ζ ≥ 0

ΨM = ln
(
zm

z0

)
+

7

3
ln

1 + 3ζ + 10ζ3

1 + 3ζ0 + 10ζ3
0

(3.12)

ΨH = ln
(
zm

z0h

)
+ 400 ln

1 + 7/400ζ + 0.005ζ2

1 + 7/400ζ0 + 0.005ζ2
0

(3.13)

• friction velocity and stability (2nd)

u∗,2 =
κum

ΨM

(3.14)

H = ρCp(Twb − Tm)κu∗,2/ΨH , E = ρCp(qwb − qm)κu∗,2/ΨH

L = −ρCpTmu
3
∗,2/(κgHv), Hv = H + 0.61(1 + 0.61qm)TmCpE

ζ2 = zm/L

• convergence condition

|ζ − ζ2| < 0.01 |(u∗ − u∗,2)/u∗,2| < 0.01

Above equation set is calculated iteratively until the convergence condition is obtained. Finally,
momentum flux (τwb) and aerodynamic resistance between water surface and reference height (raw)
are calculated from the result of friction velocity and integrated universal function.

τwb = ρu2
∗ (3.15)

raw =
ΨH

κu∗
=

ΨMΨH

κ2um
(3.16)

In the case of water body, sensible heat and latent heat fluxes come only from water surface.
Although surface fluxes have already been calculated in the above iteration process, these fluxes
are written in a resistance formulation. Note that these fluxes and net radiation (eq.(3.2)) are
dependent on Twb only.
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Hwb = ρCp
Twb − Tm

raw

= A(Twb − Tm) (3.17)

λEwb =
ρCp

γ

e∗(Twb) − em

raw
= D[e∗(Twb) − em] (3.18)

3.4 Prognostic variables and their governing equations

Water body model is expressed by force-restore model, and prognostic physycal-state variables are
only two temperatures. One is water surface skin temperature (Twb), another one is deep water
temperature (Tdw), which is defined as daily mean value of Twb. Twb shows diurnal cycle, and Tdw

shows seasonal cycle.
Most of the short-wave radiation absorbed by water body penetrate inside, and only little part
of it are absorbed and used by surface skin layer. Then, amplitude of diurnal variation of water
surface temperature is much smaller than those of other surfaces. While all long-wave radiation
can be exchanged at water surface.
Absorbed short-wave energy is stored and used seasonally. Water body absorbs much energy in
the spring and summer season, and this energy is released as latent heat (evaporation) in the
autumn and winter season.
Then, the governing equations of temperatures in the water body are slightly different from those
in the green area. In this model, we introduce a parameter β. It is defined as the propotion of
short-wave radiative energy which are absorbed by water body and penetrate into deep layer. In
the prognostic equation of surface temperature (eq. (3.19)), this propotion of absorbed short-
wave energy is subtracted from net radiation (Rnwb).
The governing equations of temperatures are expressed as follows.

Cwb
∂Twb

∂t
= Rnwb − βFs,wb −Hwb − λEwb − ωCwb(Twb − Tdw) (3.19)

Cdw
∂Tdw

∂t
= Rnwb −Hwb − λEwb (3.20)

In addition to thermal properties such as specific heat (cw) and thermal conductivity (kw), four
parameters are prepared to reproduce the energy and radiation budget characteristics properly.

• effective depth (Zs)

• short-wave radiation penetration factor (β)

• minimum albedo (α1)

• factor of albedo and µ relationship (α2)

The role and performance of these parameters will be discussed in Section ??.
The amplitude and phase of seasonal cycle of temperature are highly dependent upon the depth
of water body. To take account for the effect of water depth, effective depth (Zs) is introduced
in the calculation of effective heat capacity (eq. (3.21)) Zs does not mean the actual depth of
water body. If we look at eq. (3.22), Zs should be equal to or less than 1/

√
365 of average water

depth.

Cwb = cwZs +
√
kwcw/2ω (3.21)

Cdw =
√

365Cwb (3.22)
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3.5 Numerical solution of prognostic equations

The energy fluxes are explicit functions of atmospheric boundary conditions, prognostic variable,
and aerodynamic resistance. Prognostic equations are solved by an implicit backward method
using partial derivatives of each term.
First, considering the energy fluxes in prognostic equations are functions of temperature, partial
derivatives are calculated in subroutine partial. Then, prognostic equations are expressed in ex-
plicit backward-differencing form and a set of linear simultaneous equations regarding the changes
in temperatures over a time step (∆t) are obtained.
Not only energy fluxes but also heat exchange term (restoring term) has dependency on temper-
atures. Now prognostic equations can be written in discrete-time form.

Cwb
∆Twb

∆t
= Rnwb − βFs,wb −Hwb − λEwb − ωCwb(Twb − Tdw)

+
∂Rnwb

∂Twb
∆Twb − ∂Hwb

∂Twb
∆Twb − ∂λEwb

∂Twb
∆Twb − ωCwb(∆Twb − ∆Tdw) (3.23)

Cdw
∆Tdw

∆t
= Rnwb −Hwb − λEwb +

∂Rnwb

∂Twb
∆Twb − ∂Hwb

∂Twb
∆Twb − ∂λEwb

∂Twb
∆Twb (3.24)

If it is written in matrix form,

KX = Y −→ X = K−1Y

K =

[ Cwb

∆t
− ∂Rnwb

∂Twb
+ ∂Hwb

∂Twb
+ ∂λEwb

∂Twb
+ ωCwb ωCwb

−∂Rnwb

∂Twb
+ ∂Hwb

∂Twb
+ ∂λEwb

∂Twb

Cdw

∆t

]
X =

[
∆Twb

∆Tdw

]

Y =

[
Rnwb − βFs,wb −Hwb − λEwb − ωCwb(Twb − Tdw)

Rnwb −Hwb − λEwb

]

Above equations can be solved in terms of temperature changes (∆Twb,∆Tdw). Each temperatures
are updated to the value at time t0 + ∆t by adding temperature changes to the initial value at
time t0. Furthermore, energy fluxes are modified to show the values averaged over a time step
(between time t0 and time t0 + ∆t).

Rn′
wb = Rnwb +

1

2

∂Rnwb

∂Twb
∆Twb (3.25)

H ′
wb = Hwb +

1

2

∂Hwb

∂Twb
∆Twb (3.26)

λE ′
wb = λEwb +

1

2

∂λEwb

∂Twb
∆Twb (3.27)

According to eq.(3.2), (3.17), (3.18), partial derivatives of energy fluxes are expressed as follows.

∂Rnwb

∂Twb
= −4σεwT

3
wb (3.28)

∂Hwb

∂Twb
=

ρaCp

raw
(3.29)

∂λEwb

∂Twb
=

ρCp

γ

e′∗(Twb)

raw
(3.30)





Chapter 4

Green area model

In this chapter, green area model to be used as sub-model of SiBUC is described. Vegetation
scheme is based largely on the SiB model (Sellers et al.,1986 ). Some modification (simplification)
from original SiB was done. Variables and parameters used in the green area model are listed in
Table 4.1 and 4.2. Physical constants are listed in Table A.1 in Appendix A. Definition of
forcing variables and prognostic variables can be found in Table 1.1.

Table 4.1: List of variables used in the green area model

Symbol Definition Units
Rnc, Rng absorbed net radiation absorbed W m−2

Hc, Hg sensible heat flux W m−2

λEc, λEg latent heat flux W m−2

Cc, Cg, Cd effective heat capacity J m−2K−1

ks soil thermal conductivity Wm−1K−1

cs soil heat capacity J m−3K−1

Es direct evaporation of water from the surface soil layer kg m−2s−1

Edc,1, Edc,2 abstraction of soil moisture by transpiration kg m−2s−1

Ewc, Ewg rate of evaporation of water from wet portions kg m−2s−1

Pc, Pg rate of precipitation interception m s−1

Dc, Dg water drainage rate m s−1

P1 infiltration of precipitation into the upper soil layer m s−1

Q1,2, Q2,3 flow between soil layer m s−1

Q3 gravitational drainage from recharge layer m s−1

Ki hydraulic conductivity of ith layer m s−1

ψi soil moisture potential of ith layer m
ψl leaf water potential m
ψr soil moisture potential in root zone m
rb bulk canopy boundary layer resistance s m−1

rd aerodynamic resistance between ground and canopy air space s m−1

ra aerodynamic resistance between canopy air space and reference height s m−1

rc bulk canopy resistance s m−1

rsurf bare soil surface resistance s m−1

The subscript c refers to the canopy, g to the ground, and d to the deep soil.
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Table 4.2: List of parameters used in the green area model

Symbol Definition Unit

Time-invariant vegetation parameters
morphological properties

z2 height of canopy top m
z1 height of canopy bottom m
zc inflection height for leaf-area density m
zs ground roughness length (0.05) m
Vc canopy cover fraction —
χL Ross-Goudriaan leaf-angle distribution factor —
G1, G4 momentum transfer coefficient parameters (1.449, 11.785) —
lw, ll leaf dimension (width, length) m
D1 depth of surface soil layer (0.02) m
Dr root depth (D1 +D2) m
DT total soil depth (D1 +D2 +D3)
Dd root length density m m−3

�s mean topographic slope (0.176) radians
optical properties

αV leaf reflectance for visible —
αN leaf reflectance for near infra-red —
δV leaf transmittance for visible —
δN leaf transmittance for near infra-red —
αs,V soil reflectance for visible —
αs,N soil reflectance for near infra-red —

physical properties
Cl drag coefficient of a canopy leaf —
Cs heat/vapor transfer coefficient of a canopy leaf —

physiological properties
a2, b2, c2 light dependent stomatal response parameters
Tl, Th, To lowest, highest, and optimum temperatures for stomatal functioning K
h5 parameter governing stomatal response to the vapor pressure mb−1

ψc1 leaf water potential at which stomata start to close m
ψc2 leaf water potential at which stomata are completely closed m
rplant resistance imposed by plant vascular system (2.5×108) s
R root resistance per unit area (4.0×1012) s m−1

Time-varying vegetation parameters
LT total leaf area index m2m−2

N canopy greenness fraction —

Soil physical properties
ψs soil water potential at saturation m
Ks soil hydraulic conductivity at saturation ms−1

B soil wetness parameter —
θs soil water content at saturation (porosity) m3m−3
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4.1 Brief description of SiB model

The Simple Biosphere model (SiB) was designed for use within GCMs. As for a full description
of the philosophy, design and requirements of the model, please refer to Sellers et al.(1986).

4.1.1 Model philosophy

In designing the SiB model, the philosophy was to model the vegetation itself and thereby calculate
the radiation, momentum, heat and mass transfer properties of the surface in a consistent way.
The morphological and physiological characteristics of the vegetation community at a grid point
are used to derive coefficients and resistances which govern the fluxes between the surface and the
atmosphere. All of these fluxes depend upon the state of the vegetated surface and the atmospheric
boundary conditions.
The SiB model calculates following physical processes.

1. the reflection, transmission, absorption and emission of direct and diffuse radiation in the
visible, near infrared and thermal wavelength intervals (radiative transfer)

2. the interception of rainfall and its evaporation from the leaf surfaces (interception loss)

3. the infiltration, drainage, and storage of the residual rainfall in the soil (soil moisture)

4. the control by the photosynthetically active radiation (PAR) and the soil moisture potential
over the stomatal functioning (canopy resistance)

5. transfer of the soil moisture to the atmosphere through the root-stem-leaf system of the
vegetation (transpiration)

6. the aerodynamic transfer of water vapor, sensible heat and momentum from the vegetation
and soil to a reference level within the atmospheric boundary layer (turbulent flux)

4.1.2 Structure of the SiB

Bare
Soil

Shrubs
 only

Shrubs and
Groundcover

Groundcover
   only

 Trees and
Groundcover

Trees
only

Shrubs

Groundcover

Trees

Figure 4.1: Vegetation morphology as represented in the Simple Biosphere (SiB).
(Reproduced from Sellers et al.,1986)



38 CHAPTER 4. GREEN AREA MODEL

In SiB, the world’s vegetation is divided into two morphological groups : trees or shrubs which
constitute the upper story or canopy vegetation, and the ground cover which consists of grasses
and other herbaceous plants. Either, both or neigher of these vegetation covers may be present in
a given grid area (see Figure 4.1). The upper story vegetation consists of perennial plants with
persistent roots assigned to a fixed depth taken to be the bottom of the second soil layer. The
ground cover is made up of annual plants and may have a time-varying root depth.

There is an upper, thin soil layer (soil layer 1), from which there can be a significant rate of
wathdrawal of water by direct evaporation into the air when the pores of the soil are at or near
saturation. Beneath the root zone (soil layer 2), there is an underlying recharge layer (soil layer
3) where the transfer of water is governed only by gravitational drainage and hydraulic diffusion.

The parameters required for each vegetation type in SiB are listed in Table 1 of Sellers et al.(1986).
Values for many of the parameters are given in Dorman and Sellers (1989).
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Figure 4.2: Framework of the SiB. The transfer pathways for latent and sensible
heat fluxes are shown on the left- and right-hand sides of the diagram, respec-
tively.(Reproduced from Sellers et al.,1986; see this reference for symbol definitions.)

4.1.3 Atmospheric boundary conditions for SiB

The upper boundary conditions for SiB are as follows :

• Air temperature, vapor pressure and wind speed of the lowest model layer (reference height),
— Tm, em, um

• The solar zenith angle, — µ
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• Five components of the incident radiation, — F (0)
Fv,b(0) Visible or PAR (< 0.72µm) direct beam radiation
Fv,d(0) Visible or PAR (< 0.72µm) diffuse radiation
Fn,b(0) Near infrared (0.72 − 4.0µm) direct beam radiation
Fn,d(0) Near infrared (0.72 − 4.0µm) diffuse radiation
Ft,d(0) Thermal infrared (8.0 − 12.0µm) difuse radiation

• Large scale and convective precipitation rates, — PL, PC

The reference height (zm) is selected within the atmospheric boundary layer (usually the upper
side of surface layer, 30 - 50(m)).

µ can be calculated from the location (latitude, longitude), date, and time. The propotions of the
various spectral and angular fractions of short-wave incoming radiation are estimated from the
scheme of Goudriaan (1977), since they are not usually provided by atmospheric models.

If PL and PC are not available, total precipitation (PL + PC) is used as input value.

4.1.4 Prognostic physical-state variables of SiB

The SiB has eight prognostic physical-state variables.

• Three temperatures
Tc (canopy), Tgs (ground cover and soil surface), Td (deep soil)

• two interception water stores
Mc (canopy), Mg (ground cover)

• three soil moisture stores
W1 (surface layer), W2 (root zone), W3 (recharge layer)

4.2 Structure of the green area model

SiB had two vegetation layers for canopy and ground-cover. In the green area model, vegetation
layer is reduced to one as SSiB (Xue et al., 1991) and SiB2 (Sellers et al, 1996) does. It was neces-
sary to reduce these to one layer in SiB2 to incorporate the iterative photosynthesis-conductance
model and to make use of satellite data to describe surface parameters. This simplification reduces
the realism of SiB2 in areas that have two-story vegetation covers, such as savannah where C3

trees overlie C4 grasslands.

The green area model, presented here, also uses satellite data to calculate time-varying vegetation
parameters such as leaf area index (see Chaper ??). Therefore, both ”canopy” and ”ground
cover” in SiB are called ”canopy” and treated together in this model. The schematic image of
surface elements of the green area model is shown in Figure 4.3.

The root and soil models of the green area model are much the same as in SiB. The roots are
assumed to access the soil moisture from the second layer of a three-layer soil model, while the
third layer acts as a source for hydrological baseflow and upward recharge of the root zone. The
uppermost thin soil layer can act as a significant source of direct evaporation when the soil surface
is wet.

Each vegetation type is assigned a set of time-invariant parameters (see Table 4.2). These include
(i) morphological parameters; (ii) optical properties; and (iii) physiological properties.
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These properties are treated as constants
for each vegetation type (Table 4.3).
Time-varying quantities such as leaf area
index may be combined with these pa-
rameters to produce further quantities. In
SiB, soil properties were assigned to each
vegetation type in much the same way as
the time-invariant vegetation properties.
However, soil properties exhibit regional
variations that can be independent of veg-
etation type, and vice versa. In the green
area model, same as SiB2, Food and Agri-
culture Organization (FAO) global soil-
type map is used to assign a soil type to
each grid element (see Chapter ??).

Table 4.3: Vegetation classification schemes
used in SiB2 and green area model

Type Name
1 Broadleaf-evergreen trees
2 Broadleaf-deciduous trees
3 Broadleaf and needleleaf trees
4 Needleleaf-evergreen trees
5 Needleleaf-deciduous trees
6 Short vegetation/C4 grassland
7 Broadleaf shrubs with bare soil
8 Dwarf trees and shrubs
9 Agriculture/C3 grassland

If there is a need to identify two vegetation types within one grid area, we can further divide the
green area into two (mosaic of two tiles), that is :

Vga = Vga,1 + Vga,2 (4.1)

where Vga,1 and Vga,2 are the fractional areas of ”type 1” and ”type 2” vegetation, respectively.
Since the main concern of SiBUC is a heterogeneity between natural vegetation and urbanized
area and water body, one green area (one tile for green area) is a default setting of the green area
model.
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Figure 4.3: Structure of the green area model. (Reproduced from Sellers et al.,1996)
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4.3 Prognostic equations of the green area model

The prognostic physical-state variables of the green area model is basically same as SiB. The
difference in the definition of prognostic variables between SiB and our model is the treatment of
ground cover.

• Three temperatures
Tc (vegetation canopy), Tg (ground), Td (deep soil)

• two interception water stores
Mc (canopy), Mg (ground)

• three soil moisture stores
W1 (surface layer), W2 (root zone), W3 (recharge layer)

4.3.1 Governing equations for temperatures

In case of the green area model, two surface temperatures (Tc, Tg) are predicted to calculate the
surface fluxes. Heat transport in the soil is described by the force-restore model of Deardorff
(1977). The force-restore approximation relies on the analytical solution of the heat conduction
equation under periodic forcing, which is used to parameterize the almost periodic daily ground
heat flux. In this way, a very simple and efficient but reasonably accurate description of the
temperature dynamics can be achieved. Since the the heat conduction term through the step of
vegetation is negligible1, prognostic equation for Tc does not have restoring term. Therefore, the
governing equations for the three temperatures are expressed as follows.

Cc
∂Tc

∂t
= Rnc −Hc − λEc (4.2)

Cg
∂Tg

∂t
= Rng −Hg − λEg − ωCg(Tg − Td) (4.3)

Cd
∂Td

∂t
= Rng −Hg − λEg (4.4)

The heat capacity of the diurnally responsive upper soil (Cg) is defined after the work of Camilo
and Schmugge (1981), who formulated expressions for soil thermal conductivity (ks) and specific
heat (cs) as function of porosity and soil moisture content.

Cc = 0.0001 LT Cw ρw (4.5)

Cg =

(
csks

2ω

)1/2

(4.6)

Cd =
√

365Cg (4.7)

ks = 0.4186
1.5(1 − θs) + 1.3θsW1

0.75 + 0.65θs − 0.4θsW1
(4.8)

cs = [0.5(1 − θs) + θsW1]Cwρw (4.9)

In eq.(4.5), the thickness of canopy leaves are assumed to be 1 (mm). As for eq.(4.7), heat
capacity is propotional to a square root of cycle. Td is defined as mean value of Tg over one day,
and Td is expected to have seasonal cycle (one year). The effective heat capacity is impotant for
reproducing the amplitude and phase of diurnal cycle.

1Radiative transfer is important for the exchange of energy between canopy and ground surface.
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4.3.2 Governing equations for intercepted water

The governing equations for the two interception water stores are expressed in the same formula.

∂Mc

∂t
= Pc −Dc − Ewc

ρw
(4.10)

∂Mg

∂t
= Pg −Dg − Ewg

ρw

(4.11)

(4.12)

This is simple water budget equation for water store. In the calculation of water store (Mc,Mg),
evaporation (Ewc, Ewg) is modified if a negative value of McorMg is produced.

The interception and evaporation of precipi-
tation stored on the canopy and the ground
is modeled simply. Figure 4.4 shows the
schematic image of precipitation interception
and water budget in the green area model.
The maximum values for water store (Sc and
Sg) are set to each story. If the water store
(Mc or Mg) exceeds the maximum value, the
drainage (Dc or Dg) occurs.
First, the interception of the rainfall by the
canopy is determined by an adaptation of the
expression describing the exponential atten-
uation of radiation when the flux is verti-
cal and the leaves are black (no reflection).
The rate of inflow (interception) and outflow
(drainage) for the canopy are given as fol-
lows.

Pc = PVc(1 − e−LT Kc) (4.13)

Dc = 0 whenMc < Sc

= Pc whenMc = Sc (4.14)

The water actually captured by the canopy is
Pc−Dc, Therefore, the effective precipitation
for the ground surface is given by

P0 = P − (Pc −Dc) (4.15)

Ground
Mg

P

Ewc
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Dg

Ewg

Ψ1

Ψ2

Ψ3
Q2,3

Q1,2

Q3

Edc,1

Edc,2

Pc

P0

P1

Es

Figure 4.4: Schematic image of inter-
ception and water budget

Some of the effective precipitation can infiltrate into surface soil layer. When P0 is stronger than
the hydraulic conductivity at saturation (Ks), ’infiltration excess’ runoff occures. And if the
surface soil layer is saturated, ’saturation excess’ runoff occures.

P1 = P0 whenP0 ≤ Ks and W1 < 1

= Ks whenP0 > Ks and W1 < 1

= 0 whenW1 = 1 (4.16)
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Now P0 − P1 becomes the inflow to the surface water store (Mg).

Pg = P0 − P1 (4.17)

Dg = 0 whenMg < Sg

= Pg whenMg = Sg (4.18)

Therefore, the total runoff from the green area (Rga) is given by summing surface runoff (Dg) and
baseflow (Q3) expressed by eq.(4.24).

Rga = Dg + Q3 (4.19)

4.3.3 Governing equations for soil moisture stores

The governing equations for the three soil moistures is based on Richards’ equation with forcing
terms of evapotranspiration (Es, Edc,1, Edc,2) and infiltration (P1).

∂W1

∂t
=

1

θsD1

[
P1 −Q1,2 − 1

ρw
(Es + Edc,1)

]

∂W2

∂t
=

1

θsD2

[
Q1,2 −Q2,3 − Edc,2

ρw

]

∂W3

∂t
=

1

θsD3
[Q2,3 −Q3]

A three-layer isothermal model is used to calculate the hydraulic diffusion and gravitational
drainage of water in the soil. The equation used to describe vertical exchanges between soil
layers is expressed by Darcy’s law.

Qi,i+1 = K

[
∂ψ

∂z
+ 1

]
= K

[
2(ψi − ψi+1)

Di +Di+1
+ 1

]
(i = 1, 2) (4.20)

K =
DiKi +Di+1Ki+1

Di +Di+1
(4.21)

In eq.(4.20), the term ”1” accounts for gravitational drainage. When Qi,i+1 is positive, flow is
downward. As for the relationship between soil physical properties, Clapp and Hornberger (1978)
is used.

Ki = KsW
2B+3
i (4.22)

ψi = ψsW
−B
i (4.23)

The flow out of the bottom of soil column to create base flow is determined by gravitational
drainage only.

Q3 = sin�s Ks W
2B+3
3 (4.24)

Where �s is defined as ”mean topographic slope”. However, is is almost meaningless if the grid
size is larger than the size of actual slope of mountain.
The infiltration of liquid water (P1) is assumed to be zero when the ground temperature (Tg) is
below the freezing point of water.
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4.4 Radiative transfer (two-stream approximation)

The two-stream approximation model (Dickinson, 1983) was extended by Sellers (1985) to describe
the interception, reflection, transmission, and absorption of radiation by vegetation and soil. The
radiation model used in the green area model is same as SiB2. Since there is only one vegetation
layer, a single set of calculations for the canopy-soil system (one for each radiation component)
is performed each time step. Following the solution of the two-stream approximation model for
the canopy-ground system, the canopy reflectances, absorbances, and transmittances are specified
and the radiation absorbed by the canopy and soil from each incident component is calculated.
Reflected and emitted fluxes are used as lower boundary conditions for the atmospheric radiation
submodel.

The original equations as specified by Dickinson (1983) are as follows.

−µdI ↑
dL

+ [1 − (1 − β)(α+ δ)]I ↑ −(α+ δ)βI ↓ = (α + δ)µKβ0e
−KL (4.25)

µ
dI ↓
dL

+ [1 − (1 − β)(α+ δ)]I ↓ −(α+ δ)βI ↑ = (α + δ)µK(1 − β0)e
−KL (4.26)

where

I ↑, I ↓ = upward and downward diffuse radiative fluxes (normalized by the incident flux)
µ = cosine of zenith angle of the incident beam
K = optical depth of the direct beam per unit leaf area = G(µ)/µ

G(µ) = projected area of leaf elements in direction µ
µ = average inverse diffuse optical depth per unit leaf area

β, β0 = upscatter parameters for the diffuse and direct beams
L = cumulative leaf area index

The values of the parameters K,G(µ), µ are functions of canopy geometry, specifically the leaf
angle distribution function. The values of the upscatter parameters β and β0 are functions of both
canopy geometric and optical properties.

In SiB2, specification of the leaf angle distribution is done by means of the χL function of Ross
(1975), whereby the departure of leaf angles from a spherical distribution is characterized by a
simple expression.

χL =
∫ π/2

0
|1 −O(θ)| sin θdθ (4.27)

where

θ : the leaf inclination angle relative to a horizontal plane
O(θ) : leaf-angle distribution function

• χL = 0 : spherically (random) distribution

• χL = 1 : horizontal leaves

• χL = -1 : vertical leaves

Goudriaan (1977) fitted a curve to datasets generated from eq.(4.27), which provides reasonable
estimates of the average leaf projection in any direction.



4.4. RADIATIVE TRANSFER (TWO-STREAM APPROXIMATION) 45

G(µ) = φ1 + φ2µ (4.28)

φ1 = 0.5 − 0.633χL − 0.33χ2
L (4.29)

φ2 = 0.877(1 − 2φ1) (4.30)

Equation (4.28) may be used over the range −0.4 < χL < 0.6. Field data have been analyzed
to specify χL for different biomes. χL is also used to describe the aerodynamic resistances (see
Section 4.5).
The two equations (4.25) and (4.26) are solved using the incident (above canopy) radiation
flux and the upwelling diffuse flux refrected by the soil as upper and lower boundary conditions,
respectively. The calculation is performed for each of the four solar radiation components with a
different simplified calculations for the exchanges of thermal infrared radiation.
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Figure 4.5: Schematic image of radiative transfer model

Figure 4.5 describes each term of radiation components for direct beam, diffuse and thermal-
infrared radiation. The downward flux of diffuse radiation in the canopy I ↓ has three components.
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• a component resulting from interception and rescattering of the direct beam radiation

• an exponentially extinguished downward flux resulting from downward scattering in the
canopy

• an exponentially attenuated upwards flux resulting from upward scattering of radiation by
canopy leaves and soil.

The upward diffuse flux (I ↑) also has similar components. I ↑ (0) can be used as the canopy-soil
system hemispherical reflectance, while I ↓ (LT/V ) + e−KLT /V defines the spectral transmittance
of the vegetation.

The direct beam solar radiation absorbed by the canopy (FV/N,b(c)) and ground (FV/N,b(g)) is given
as follows.

FΛ,b(c) = V
[
1 − I↑(0) − (1 − αΛ,b)e

−KLT /Vc − (1 − αΛ,d)I
↓(LT/Vc)

]
FΛ,b(0) (4.31)

FΛ,b(g) =
[
(1 − Vc)(1 − αΛ,b) + Vc

(
(1 − αΛ,b)e

−KLT /Vc + (1 − αΛ,d)I
↓(LT /Vc)

)]
FΛ,b(0)(4.32)

The diffuse solar radiation absorbed by the canopy (FΛ,d(c)) and ground (FΛ,d(g)) is given as follows.

FΛ,d(c) = Vc

[
1 − I↑(0) − (1 − αΛ,d)I

↓(LT/Vc)
]
FΛ,d(0) (4.33)

FΛ,d(g) =
[
(1 − Vc)(1 − αΛ,d) + Vc(1 − αΛ,d)I

↓(LT /Vc)
]
FΛ,d(0) (4.34)

The net absorbed thermal radiation fluxes are given by

FT,d(c) = δTVcFT,d(0) − 2δTVcσT
4
c + δTVcσT

4
g (4.35)

FT,d(g) = (1 − δTVc)FT,d(0) + δTVcσT
4
c − σT 4

g (4.36)

FΛ,µ(0) = incident radiant solar energy of wavelength interbal Λ and direction µ
(V = visible, N = near-infrared) and (d = diffuse, b = beam) W m−2

FΛ,µ(c) = amount of FΛ,µ(0) absorbed by the canopy W m−2

FΛ,µ(g) = amount of FΛ,µ(0) absorbed by the ground W m−2

FT,d(0) = incident thermal infrared radiation (TIR) W m−2

V δT = fraction of incident TIR absorbed by canopy
δT = 1 - e−LT /Vcµ

In eq.(4.35) and eq.(4.36), ground and canopy emissivities are assumed to approach unity. The
net radiation fluxes for canopy and ground are given by the total of absorbed flux components.

Rnc =
∑

FΛ,µ(c) = FV,b(c) + FN,b(c) + FV,d(c) + FN,d(c) + FT,d(c) (4.37)

Rng =
∑

FΛ,µ(g) = FV,b(g) + FN,b(g) + FV,d(g) + FN,d(g) + FT,d(g) (4.38)
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4.5 Turbulent transfer and aerodynamic resistances

The aerodynamic resistance model of SiB (Sellers et al.,1986) described turbulent transfer pro-
cesses above, within, and below a vegetation canopy of ”constant leaf area density”. This ar-
rangement was found to give unrealistically large estimates of roughness length (z0). Then, the
scheme was modified to describe height-varying leaf area densities (Sellers et al.,1989). In this
modified form, the first-order closure model provided much better descriptions of z0, d0, and the
wind profile. This improved version of the turbulent transfer scheme is used in SiB2 (Sellers et
al.,1996) and also adopted to the green area model.
Figure 4.5 shows the different turbulent transfer regimes considered in the first-order closure
model.
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Figure 4.6: Turbulent transfer regimes considered in the first-order closure model.
(Reproduced from Sellers et al.,1996)

4.5.1 Above the transition layer (zt ≤ z ≤ zm)

Conventional log-linear profile is assumed to be valid, and shear stress is assumed to be constant.

τ = ρKm
∂u

∂z
(4.39)

Km = K∗
m = κu∗(z − d0) =

κ2u(z − d0)

log

(
z − d0

z0

) (4.40)
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4.5.2 Within the transition layer (z2 ≤ z ≤ zt)

Shear stress is assumed to be constant (eq.4.39), but the actual value of the momentum transfer
coefficient (Km) varies linearly with height from a value higher than K∗

m (log-linear extrapolated
value of Km) at z2 to Km = K∗

m at zt. This treatment of Km is intended to take account of the
intense local turbulence generated by roughness element at the top of the canopy (Raupach and
Thom, 1981; Garrat, 1978).

Km = K∗
m

[
1 + (G1 − 1)

(
zt − z

zt − z2

)]
= κu∗(z − d0)

[
1 + (G1 − 1)

(
zt − z

zt − z2

)]
(4.41)

The transition height itself is assumed to be a linear function of z0.

zt = z2 +G4z0 (4.42)

To maintain constant shear stress throughout the same layer, the wind velocity gradient must
shift away from the log-linear profile.

τ = shear stress kgm−1s−2

Km = local momentum transfer coefficient m2s−1

K∗
m = log-linear profile value of Km m2s−1

u∗ = friction velocity ms−1

u = local wind speed ms−1

d0 = zero plane displacement height m
z0 = roughness length m

4.5.3 Within the canopy air space (CAS) (z1 ≤ z ≤ z2)

Leaf area density (Ld) increases with height from z1 to zc, after which it decreases linearly with
height to z2, giving a triangular profile of Ld (see Figure 4.5).

Ld = a1 + b1z (z1 < z < zc) (4.43)

Ld = a2 + b2z (zc < z < z2) (4.44)

(4.45)

Given an estimate of total leaf area index (LT ) from satellite data, the constants (a1, a2, b1, b2)
can be obtained from the solution of∫ z2

z1

Lddz = LT (4.46)

b1 =
2VcLT

(z2 − z1)(zc − z1)
b2 =

2VcLT

(z2 − z1)(zc − z2)
a1 = −b1 z1 a2 = −b2 z2 (4.47)

Shear is absorbed by drag force interaction with with the canopy leaves.

∂τ

∂z
= ρ

ClLd

Ps
u2 (4.48)

Monteith (1973) reproduces data that show the dependence of the leaf drag coefficient of isolated
leaves on leaf inclination and dimension.

Cl = 1.328
(

2

Re1/2

)
+ 0.45sin θ

1.6
(4.49)



4.5. TURBULENT TRANSFER AND AERODYNAMIC RESISTANCES 49

The shelter factor Ps was first introduced by Thom (1972) and is still not well understood. It
accounts for the observation that the drag coefficient of an ensemble of densely clustered leaf
elements is less than the sum of their individual drag coefficients, presumably due to mutual shel-
tering effects. Sellers et al. (1996) proposed a power relation function following the observations
of Thom (1972).

Ps = 1 + L0.6
d (4.50)

Km is assumed to be a product of local wind (u) and mixing length (lm).

Km = lmu lm = 2(D2
l Ld)

1/3 (4.51)

Following Thom (1971), local wind speed profile within the canopy is simply expressed by an
exponential function.

u = u2 exp
[
−aw

(
1 − z

z2

)]
aw =

(
Cl LT (z2 − z1)

lm

)1/2

(4.52)

Cl = leaf drag coefficient —
Ps = shelter factor of a canopy leaf —

sin θ = mean leaf inclination = (1-χL)/π —
Re = Reynolds number = uDl/v —
u = typical local wind speed (� 1 ) m s−1

Dl = leaf dimension = (lw + ll)/2 m
v = kinematic viscosity of air (� 0.15 × 10−4 at 15(degC)) m2s−1

u1, u2 = wind speed at z1, z2 m s−1

4.5.4 Below the canopy (zs ≤ z ≤ z1)

A log-linear wind profile with constant shear stress links the soil surface to the flow at z1. The
shear stress is a function of a ground roughness (zs).

τ1 = ρ

[
κu1

log(z1/zs)

]2

(4.53)

Thom (1971) defined the zero plane displacement height (d0) as equivalent to the mement height
of momentum absorption by the surface.

d0 =

∫ z2

z1

LdCl

ps
u2z dz

∫ z2

z1

LdCl

ps
u2 dz +

τ1
ρ

(4.54)

4.5.5 Solution of momentum transfer equation set

z0 and d0 are independent of wind speed at reference height (um). Firstly, the local wind speed at
the canopy top is assumed (u2 = 1). Then, wind profile within canopy, u1, τ1, d0, u∗ are specified.
Next, z0 is calculated assuming the log-linear profile above the canopy.

z0 = exp
(
log(z2 − d0) − κu2

u∗

)
(4.55)



50 CHAPTER 4. GREEN AREA MODEL

Using z0, d0, u∗, and um, wind speed at canopy top (u2) is specified, and τ , u∗ are modified from
the ”temporal” values which are specified from (u2 = 1).

u2 = um
log[(z2 − d0)/z0]

log[(zm − d0)/z0]
(4.56)

τ = τu2
2 u∗ = u∗u2 (4.57)

Now the profile of wind speed (u) and momuntum transfer coefficient (Km) can be specified from
the ground surface (zs) to the reference height (zm). These calculated profiles of u and Km are
then used to derive the aerodynamic resistances.

4.5.6 Aerodynamic resistances

The bulk canopy boundary-layer resistance (under neutral condition) is given by following expres-
sion.

rb =

[∫ z2

z1

Ldu
1/2

PsCs
dz

]−1

=
C1

u
1/2
2

(4.58)

The transfer coefficient for heat-mass transfer (Cs) is less than that for momentum (Cl) since Cl

incorporates both bluff-body and viscous forces, while Cs describes only viscous transfer. Following
Goudriaan (1977), Cs is expressed as

Cs = 90l1/2
w (4.59)

The ground to canopy air space (CAS) resistance is defined as in SiB.

rd =
∫ ha

zs

1

Ks
dz =

∫ ha

zs

1

Km
dz =

C2

u2
(4.60)

Heat-water vapor transfer coefficient (Ks) is assumed to be equal to Km.
Canopy source height (ha) is assumed to be qeual to the center of action of rb within the canopy
as obtained from the solution of ∫ ha

z1

Ldu
1/2dz =

∫ z2

ha

Ldu
1/2dz (4.61)

The resistance between CAS and the reference height (zm) can be described integration of Ks(=
Km) over the distance from ha to zm, which includes within-canopy (ha to z2), turbulent transition
layer (z2 to zt) and log-linear profile (zt to zm) segments.

ra =
∫ zm

ha

1

Ks
dz =

∫ Z2

ha

1

Km
dz +

∫ Zt

Z2

1

Km
dz +

∫ Zm

Zt

1

Km
dz =

C3

um
(4.62)

The coefficients C1, C2, C3 and the ratio u2 : um need only be calculated once for a given vegetation
condition (type, geometry, LAI) to calcurate ra, rb, rd under neutral conditions.
The above expressions for ra, rb, rd are adjusted to take acount of nonneutrality.

1

rb
=

u
1/2
2

C1
+
LT

890

(
Tc − Ta

lw

)1/4

(4.63)

1

rd
=

u2

C1

[
1 +

9z2(Tg − Ta)

Tgu2
2

]
(4.64)

ra =
ΨMΨH

κ2um
(4.65)

ΨM and ΨH are integrated universal function of Monin-Obukov similarity (see Section 2.4).
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4.6 Surface resistances

The surface resistances rc and rsurf are the additional resistances imposed on the transfer of water
vapor from leaves’ stomata and soil pores.
For bare soil evaporation, rsurf is related to the requirement for moisture to diffuse to the soil
surface before it can evaporate. rsurf governs moisture flux from the top soil layer to the overlying
air and was defined following the empirical expression of Shu Fen Sun (1982)

rsurf = 30 + 3.5W−2.3
1 (4.66)

When e∗(Tg) < ea, which is the condition of the dew formation (negative evaporation), rsurf is set
to zero.
For vegetated surfaces, the additional resistance represents the control that ’stomata’ exert over
transpiration. Stomata are microscopic pores on the leaves of plants that open and close in
response to environmental conditions such as PAR, leaf temperature, and soil moisture. Broadly
speaking, they seem to maximize rates of plant photosynthesis, while minimizing the risk of
excessive transpiration rates which would cause the soil to dry out.
The bulk canopy resistance (rc) may be thought of as equivalent to all the stomatal resistances of
the individual leaves in the canopy ”acting in parallel”. Accordingly, it is calculated as the total
effect of the stomatal resistance of all the leaves in the canopy integrated over all leaf azimuths
(ξ), leaf inclinations (θ), and from the top to the bottom of the canopy, that is, over the total leaf
area index (LT ). This calculation allows for the effects of differential illumination of individual
leaves due to their particular angle to the incoming PAR flux and their position in the canopy.
The effects of leaf temperature (Tc), leaf water potential (ψl) and vapor pressure deficit (δe) are
assumed to act uniformly throughout the canopy and are applied as multiplicative factors to the
light-integrated portion of the canopy resistance. rc may therefore be written as follows.

1

rc
= Vc Nc f(T ) f(δe) f(ψl)

∫ LT

0

∫ π/2

0

∫ 2π

0

O(ξ, θ)

rs(Fπ, ξ, θ)
sin θ dξ dθ dL (4.67)

Note that rs is the light-dependent stomatal resistance of an individual leaf, and is given by
following expression.

rs =
a2

b2 + Fπ · n + c2 (4.68)

f(Tc) = stomatal resistance adjustment factor for the effects of leaf temperature (Tc)
f(δe) = stomatal resistance adjustment factor for the effects of vapor pressure deficit (δe)
f(ψl) = stomatal resistance adjustment factor for the effects of leaf water potential (ψl)

Fπ = photosynthetically active radiation (PAR) flux
n = vector of leaf normal

The dependence of rc on different leaf angle distributions is discussed in Sellers (1985). Some
analytical solutions to the integral part of eq.(4.67) have been obtained for a number of leaf
angle distribution functions. However, it is convenient to use the average leaf projection as a
function of µ,G(µ) to replace the leaf angle distribution function O(ξ, θ). Use of an average leaf
projection for given PAR flux direction greatly simplifies the solution of eq.(4.67), as the angular
integrations may be dropped.
The use of Ross-Goudriaan function (eq.(4.28)) in eq.(4.67), where it replaces the O(ξ, θ) sin θ
term, reduces to following formula.

1

rc

= Vc Nc f(T ) f(δe) f(ψl)
∫ LT

0

G(µ)

rs

dL (4.69)
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In SiB, the bulked form of eq.(4.69) is used in preference to the fully integrated form of eq.(4.67).
This necessitates the specification of a single direction for the incoming PAR flux which is made
up of both diffuse (Fv,d(0)) and direct beam (Fv,b(0)) components. A mean angle of PAR incidence
is estimated by considering the ”flux-weighted” angles of the direct and diffuse contributions to
the total PAR flux.
The value of rc estimated from the integral parts of eq.(4.69) relates only to the PAR dependence
of stomatal control, and so represents the minimum attainable value of rc. The factors outside the
integral represent the effects of nonoptimal conditions. The formula was taken from Jarvis (1976)
and reproduced in Sellers et al.(1986) and Sellers and Dorman (1987).

f(Tc) =
(Tc − Tl)(Th − Tc)

h4

(To − Tl)(Th − To)h4
h4 =

Th − To

To − Tl

(4.70)

f(δe) = 1 − h5δe = 1 − h5[e∗(Ta) − ea] (4.71)

f(ψl) =
ψl − ψc2

ψc1 − ψc2

(4.72)

Of particular importance is the factor f(ψl) which accounts for the effects of soil moisture stress
and excessive evaporation demand. ψl is calculated by using catenary model of the water transfer
pathway from root zone to leaf (van der Honert, 1948).

ψl = ψr − ha − Edc

ρw
(rplant + rsoil) (4.73)

The soil moisture potential in the root zone ψr is obtained by summing the soil moisture potentials
weighted by the depth of each soil layer.

ψr =
1

Dr

Dr∑
0

ψiDi =
ψ1D1 + ψ2D2

Dr
(4.74)

rplant is given as a time-invariant parameter (Table 4.2) and rsoil is given as a function of ψr.
From eq.(4.73), the abstraction of soil moisture by transpiration from the ith soil layer (Edc,i) is
given by

Edc,i =
Di

Dr

(
ψi − ψl − ha

rplant + rsoil

)
ρw (4.75)

4.7 Sensible and latent heat fluxes

The fluxes of sensible and latent heat from each surface are described by an Ohm’s law analogue
form in which the fluxes are propotional to potential differences and inversely propotional to a
(series of) resistance.

flux =
potential difference

resistance
(4.76)

For the fluxes of sensible heat and latent heat, the potential differences are represented by tem-
peratures and vapor pressures, respectively. The resistances are equivalent to the integrals of
inverse conductances over a path between the specified potential difference endpoints. Figure
4.7(a) shows how sensible heat fluxes from the canopy (Hc) and the ground (Hg) must traverse
the aerodynamic resistances rb or rd and ra. Canopy water vapor flux must traverse an additional
resistance (rc). In addition, since it is assumed that water vapor exchange occurs from only one
side of the leaf, the boundary-layer resistance is doubled for water vapor (2rb). Evaporation from



4.7. SENSIBLE AND LATENT HEAT FLUXES 53

Surface
Layer

Root
Zone

Canopy

rb

g

Hc

a

rd

Reference
Height

ra

H

Tg

T

c        gH  +H

Tm

Tc

(a) Sensible heat flux

Surface
Layer

Root
Zone

Canopy

Ψ2

e*(Tc)

Egλ

Edcλ
ea

rd

rsoil

hsoile*(Tg)

emReference
Height

ra

e*(Tg)

2rb

Ewcλ

Ewgλ

Ψl rc

(E   +E   +E   +E  )λ wc       dc      wg       g

(b) Latent heat flux

Figure 4.7: Transfer pathways as conceptualized in the green area model. (Repro-
duced from Sellers et al.,1996)

within the top soil layer Eg must cross the soil surface resistance (rsurf). Fluxes, potential dif-
ferences, and resistances are summarized in Table 4.4. The transfer pathways for sensible and
latent heat fluxes are shown schematically in Figure 4.7.

Table 4.4: Fluxes, potential differences and
resistances associated with green area model

Flux potential difference Resistance
Hc (Tc − Ta)ρcp rb

Hg (Tg − Ta)ρcp rd

Hc +Hg (Ta − Tm)ρcp ra

λEdc (e∗(Tc) − ea)ρcp/γ
rc + 2rb
1 −Wc

λEwc (e∗(Tc) − ea)ρcp/γ 2rb/Wc

λEs (hsoile∗(Tg) − ea)ρcp/γ
rsurf + rd

1 −Wg

λEwg (e∗(Tg) − ea)ρcp/γ rd/Wg

λ(Ec + Eg) (ea − em)ρcp/γ ra

If we assume no storage of heat at any of the junctions of the resistance network shown in Figure
4.7(a), we can write the area-averaged sensible heat fluxes as follows.

Hc =
Tc − Ta

rb

ρCp = A(Tc − Ta), A = ρCp/rb (4.77)

Hg =
Tg − Ta

rd

ρCp = B(Tg − Ta), B = ρCp/rd (4.78)

Hc +Hg =
Ta − Tm

ra

ρCp = C(Ta − Tm), C = ρCp/ra (4.79)
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Air temperature within canopy air space (CAS) (Ta) can be eliminated from eq.(4.77) to (4.79).

Ta =
A · Tc +B · Tg + C · Tm

A+B + C
(4.80)

Water vapor fluxes from the canopy (Ec) and the ground (Eg) have two components respectively.

Ec : Ewc : evaporation of water from wetted fraction of the canopy (interception loss)
Edc : transpiration of soil water from the dry fraction of the canopy

Eg : Ewg : evaporation of water from wetted fraction of the ground
Es : direct evaporation of water from the surface soil layer

If we assume no storage of water vapor at any of the junctions of the resistance network shown in
Figure 4.7(b), we can write the area-averaged latent heat fluxes as follows.

λEc = λEwc + λEdc = D(e∗(Tc) − ea), D =
ρCp

γ

[
Wc

2rb
+

1 −Wc

rc + 2rb

]
(4.81)

λEg = λEwg + λEs = E(e∗(Tg) − ea), E =
ρCp

γ

[
Wg

rd
+

fhe∗(Tg) − ea

(rsurf + rd)(e∗(Tg) − ea)

]
(4.82)

λEc + λEg = F (ea − em), F =
ρCp

γra

(4.83)

Water vapor pressure within CAS (ea) can be eliminated from eq.(4.81) to (4.83).

ea =
D · e∗(Tc) + E · e∗(Tg) + F · em

D + E + F
(4.84)

4.8 Numerical solution of prognostic equations

In the numerical solution of the prognostic equations for temperatures (Tc, Tg), we make use of
the fact that the storage terms, involving Ci(i = c, g), are small relative to the energy fluxes
Rni, λEi, andHi(i = c, g). These values make eq. (4.2), (4.3) fast response equations so that
changes in Tc, Tg, even over a time step as short as an hour, can have a significant feedback on the
magnitude of the energy fluxes. The energy fluxes are explicit functions of atmospheric boundary
conditions, prognostic variables, aerodynamic and surface resistances. Prognostic equations are
solved by an implicit backward method using partial derivatives of each term.
First, considering the energy fluxes in prognostic equations are functions of temperature, partial
derivatives are calculated in subroutine partial. Then, prognostic equations are expressed in ex-
plicit backward-differencing form and a set of linear simultaneous equations regarding the changes
in temperatures over a time step (∆t) are obtained.
Not only energy fluxes but also heat exchange terms have dependency on temperatures. Now
prognostic equations can be written in discrete-time form.

Cc
∆Tc

∆t
= Rnc −Hc − λEc

+

(
∂Rnc

∂Tc
− ∂Hc

∂Tc
− ∂λEc

∂Tc

)
∆Tc +

(
∂Rnc

∂Tg
− ∂Hc

∂Tg
− ∂λEc

∂Tg

)
∆Tg (4.85)

Cg
∆Tg

∆t
= Rng −Hg − λEg − ωCg(Tg − Td) +

(
∂Rng

∂Tc
− ∂Hg

∂Tc
− ∂λEg

∂Tc

)
∆Tc
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+

(
∂Rng

∂Tg
− ∂Hg

∂Tg
− ∂λEg

∂Tg
− ωCg

)
∆Tg + ωCg∆Td (4.86)

Cd
∆Td

∆t
= Rng −Hg − λEg

+

(
∂Rng

∂Tc
− ∂Hg

∂Tc
− ∂λEg

∂Tc

)
∆Tc +

(
∂Rng

∂Tg
− ∂Hg

∂Tg
− ∂λEg

∂Tg

)
∆Tg (4.87)

If it is written in matrix form,

KX = Y −→ X = K−1Y

K =



K1,1 K1,2 K1,3

K2,1 K2,2 K2,3

K3,1 K3,2 K3,3


 X =




∆Tc

∆Tg

∆Td




where

K1,1 = Cc
∆t −

∂Rnc
∂Tc

+ ∂Hc
∂Tc

+ ∂λEc
∂Tc

K1,2 = −∂Rnc
∂Tg

+ ∂Hc
∂Tg

+ ∂λEc
∂Tg

K1,3 = 0

K2,1 = −∂Rng

∂Tc
+
∂Hg

∂Tc
+
∂λEg

∂Tc
K2,2 =

Cg

∆t −
∂Rng

∂Tg
+
∂Hg

∂Tg
+
∂λEg

∂Tg
+ ωCg K2,3 = −ωCg

K3,1 = −∂Rng

∂Tc
+
∂Hg

∂Tc
+
∂λEg

∂Tc
K3,2 = −∂Rng

∂Tg
+
∂Hg

∂Tg
+
∂λEg

∂Tg
K3,3 = Cd

∆t

Y =




Rnc −Hc − λEc

Rng −Hg − λEg − ωCg(Tg − Td)
Rng −Hg − λEg




Above equations can be solved in terms of temperature changes (∆Tc,∆Tg,∆Td). Each tempera-
tures are updated to the value at time t0 + ∆t by adding temperature changes to the initial value
at time t0. Furthermore, energy fluxes are modified to show the values averaged over a time step
(between time t0 and time t0 + ∆t).

Rn′
c = Rnc +

1

2

(
∂Rnc

∂Tc
∆Tc +

∂Rnc

∂Tg
∆Tg

)
(4.88)

Rn′
g = Rng +

1

2

(
∂Rng

∂Tc

∆Tc +
∂Rng

∂Tg

∆Tg

)
(4.89)

H ′
c = Hc +

1

2

(
∂Hc

∂Tc
∆Tc +

∂Hc

∂Tg
∆Tg

)
(4.90)

H ′
g = Hg +

1

2

(
∂Hg

∂Tc
∆Tc +

∂Hg

∂Tg
∆Tg

)
(4.91)

λE ′
c = λEc +

1

2

(
∂λEc

∂Tc
∆Tc +

∂λEc

∂Tg
∆Tg

)
(4.92)

λE ′
g = λEg +

1

2

(
∂λEg

∂Tc

∆Tc +
∂λEg

∂Tg

∆Tg

)
(4.93)





Appendix A

List of simbols and their definitions

Table A.1: List of physical constants
symbol definition unit

λ latent heat of vaporization J kg−1

cw specific heat of water (= 4.18×106) J m−3K−1

kw thermal conductivity (= 0.6) W m−1K−1

εw emissivity of water (= 0.97)
σ Stephan-Boltsman constant (= 5.6698 × 10−8) Wm−2K−4

ρ density of air (= 1.2) kg m−3

ρw density of water (=1000) kg m−3

Cp specific heat of air (= 1010) J kg−1K−1

γ psychrometric constant (= 0.662) mb K−1

ω angular frequency of diurnal cycle (2π/86400) s−1

κ von Karman’s constant (= 0.4)
g gravity accerelation (= 9.8) m s−2
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